Massive Compression for High Data Rate Macromolecular Crystallography (HDRMX): Impact on Diffraction Data and Subsequent Structural Analysis

Herbert J. Bernstein, Alexei S Soares, Kimberly Horvat, Jean Jakoncic
{"title":"Massive Compression for High Data Rate Macromolecular Crystallography (HDRMX): Impact on Diffraction Data and Subsequent Structural Analysis","authors":"Herbert J. Bernstein, Alexei S Soares, Kimberly Horvat, Jean Jakoncic","doi":"10.1101/2024.09.06.611720","DOIUrl":null,"url":null,"abstract":"New higher-count-rate, integrating, large area X-ray detectors with framing rates as high as 17,400 images per second are beginning to be available. These will soon be used for specialized MX experiments but will require optimal lossy compression algorithms to enable systems to keep up with data throughput. Some information may be lost. Can we minimize this loss with acceptable impact on structural information? To explore this question, we have considered several approaches: summing short sequences of images, binning to create the effect of larger pixels, use of JPEG-2000 lossy wavelet-based compression, and use of Hcompress, which is a Haar-wavelet-based lossy compression borrowed from astronomy. We also explore the effect of the combination of summing, binning, and Hcompress or JPEG-2000. In each of these last two methods one can specify approximately how much one wants the result to be compressed from the starting file size. These provide particularly effective lossy compressions that retain essential information for structure solution from Bragg reflections.","PeriodicalId":501307,"journal":{"name":"bioRxiv - Bioinformatics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.06.611720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

New higher-count-rate, integrating, large area X-ray detectors with framing rates as high as 17,400 images per second are beginning to be available. These will soon be used for specialized MX experiments but will require optimal lossy compression algorithms to enable systems to keep up with data throughput. Some information may be lost. Can we minimize this loss with acceptable impact on structural information? To explore this question, we have considered several approaches: summing short sequences of images, binning to create the effect of larger pixels, use of JPEG-2000 lossy wavelet-based compression, and use of Hcompress, which is a Haar-wavelet-based lossy compression borrowed from astronomy. We also explore the effect of the combination of summing, binning, and Hcompress or JPEG-2000. In each of these last two methods one can specify approximately how much one wants the result to be compressed from the starting file size. These provide particularly effective lossy compressions that retain essential information for structure solution from Bragg reflections.
高数据速率大分子晶体学(HDRMX)的大规模压缩:对衍射数据和后续结构分析的影响
新的更高计数率、集成、大面积 X 射线探测器开始问世,其成象率高达每秒 17,400 幅图像。这些设备将很快用于专门的 MX 实验,但需要最佳的有损压缩算法,以使系统能够跟上数据吞吐量。有些信息可能会丢失。我们能否在对结构信息造成可接受影响的情况下尽量减少这种损失?为了探讨这个问题,我们考虑了几种方法:对短序列图像进行求和;进行二进制以产生较大像素的效果;使用基于小波的 JPEG-2000 有损压缩;以及使用 Hcompress,这是一种借鉴自天文学的基于哈尔小波的有损压缩。我们还探讨了将求和、分档、Hcompress 或 JPEG-2000 结合使用的效果。在后两种方法中,每种方法都可以指定在起始文件大小的基础上对结果进行压缩的大致程度。这些方法提供了特别有效的有损压缩,保留了布拉格反射结构求解的基本信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信