A novel channel invariant architecture for the segmentation of cells and nuclei in multiplexed images using InstanSeg

Thibaut Goldsborough, Alan O'Callaghan, Fiona Inglis, Leo Leplat, Andrew Filby, Hakan Bilen, Peter Bankhead
{"title":"A novel channel invariant architecture for the segmentation of cells and nuclei in multiplexed images using InstanSeg","authors":"Thibaut Goldsborough, Alan O'Callaghan, Fiona Inglis, Leo Leplat, Andrew Filby, Hakan Bilen, Peter Bankhead","doi":"10.1101/2024.09.04.611150","DOIUrl":null,"url":null,"abstract":"The quantitative analysis of bioimaging data increasingly depends on the accurate segmentation of cells and nuclei, a significant challenge for the analysis of high-plex imaging data. Current deep learning-based approaches to segment cells in multiplexed images require reducing the input to a small and fixed number of input channels, discarding imaging information in the process. We present ChannelNet, a novel deep learning architecture for generating three-channel representations of multiplexed images irrespective of the number or ordering of imaged biomarkers. When combined with InstanSeg, ChannelNet sets a new benchmark for the segmentation of cells and nuclei on public multiplexed imaging datasets. We provide an open implementation of our method and integrate it in open source software. Our code and models are available at https://github.com/instanseg/instanseg.","PeriodicalId":501307,"journal":{"name":"bioRxiv - Bioinformatics","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.04.611150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The quantitative analysis of bioimaging data increasingly depends on the accurate segmentation of cells and nuclei, a significant challenge for the analysis of high-plex imaging data. Current deep learning-based approaches to segment cells in multiplexed images require reducing the input to a small and fixed number of input channels, discarding imaging information in the process. We present ChannelNet, a novel deep learning architecture for generating three-channel representations of multiplexed images irrespective of the number or ordering of imaged biomarkers. When combined with InstanSeg, ChannelNet sets a new benchmark for the segmentation of cells and nuclei on public multiplexed imaging datasets. We provide an open implementation of our method and integrate it in open source software. Our code and models are available at https://github.com/instanseg/instanseg.
使用 InstanSeg 在多路复用图像中分割细胞和细胞核的新型通道不变结构
生物成像数据的定量分析越来越依赖于细胞和细胞核的精确分割,这对高倍成像数据的分析是一个重大挑战。目前基于深度学习的多路复用图像细胞分割方法需要将输入减少到一小部分固定数量的输入通道,在此过程中会丢弃成像信息。我们介绍的 ChannelNet 是一种新颖的深度学习架构,用于生成复用图像的三通道表示,而与成像生物标记物的数量或排序无关。与 InstanSeg 结合后,ChannelNet 为在公共多路复用成像数据集上分割细胞和细胞核树立了新的标杆。我们提供了我们方法的开放式实现,并将其集成到开源软件中。我们的代码和模型可在 https://github.com/instanseg/instanseg 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信