Fabrication of MgCo2O4@MnO2 nanocomposite on nickel foam with a core-shell structure and its application for glucose measurement

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jie Zhang, Jiasheng Xu
{"title":"Fabrication of MgCo2O4@MnO2 nanocomposite on nickel foam with a core-shell structure and its application for glucose measurement","authors":"Jie Zhang, Jiasheng Xu","doi":"10.1007/s43153-024-00501-8","DOIUrl":null,"url":null,"abstract":"<p>The core-shell structured nanomaterial of MgCo<sub>2</sub>O<sub>4</sub>@MnO<sub>2</sub> on nickel foam (MCMNA/NF) was synthesized via a two-step hydrothermal method. It can be used as a self-supported electrode, which was constructed to an electrochemical sensor for sensitive measurement of glucose. The core-shell structure with a MnO<sub>2</sub> shell significantly enhances the material’s specific surface area and accelerates the electron transport process. Electrochemical catalytic oxidation tests were conducted on core-shell structured MCMNA/NF nanocomposite as a working electrode. The sensitivity is determined to be 9.37 μA·mM<sup>−1</sup>·cm<sup>−2</sup> and the detection limit is 0.02 mM. These test results demonstrate that the material exhibits excellent stability and selectivity as a glucose sensor. The synergistic effect of MgCo<sub>2</sub>O<sub>4</sub> and MnO<sub>2</sub> can effectively promote the application performance of the electrode materials. The MgCo<sub>2</sub>O<sub>4</sub>@MnO<sub>2</sub> glucose sensor material also exhibits exceptional resistance to interference, demonstrating no interference from Urea, Citric acid (CA), Ascorbic acid (AA), or specific inorganic salts during blood glucose detection.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s43153-024-00501-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The core-shell structured nanomaterial of MgCo2O4@MnO2 on nickel foam (MCMNA/NF) was synthesized via a two-step hydrothermal method. It can be used as a self-supported electrode, which was constructed to an electrochemical sensor for sensitive measurement of glucose. The core-shell structure with a MnO2 shell significantly enhances the material’s specific surface area and accelerates the electron transport process. Electrochemical catalytic oxidation tests were conducted on core-shell structured MCMNA/NF nanocomposite as a working electrode. The sensitivity is determined to be 9.37 μA·mM−1·cm−2 and the detection limit is 0.02 mM. These test results demonstrate that the material exhibits excellent stability and selectivity as a glucose sensor. The synergistic effect of MgCo2O4 and MnO2 can effectively promote the application performance of the electrode materials. The MgCo2O4@MnO2 glucose sensor material also exhibits exceptional resistance to interference, demonstrating no interference from Urea, Citric acid (CA), Ascorbic acid (AA), or specific inorganic salts during blood glucose detection.

Graphical abstract

Abstract Image

在泡沫镍上制备具有核壳结构的 MgCo2O4@MnO2 纳米复合材料及其在葡萄糖测量中的应用
通过两步水热法合成了泡沫镍上的 MgCo2O4@MnO2 核壳结构纳米材料(MCMNA/NF)。它可用作自支撑电极,并被构建成一种用于灵敏测量葡萄糖的电化学传感器。带有 MnO2 外壳的核壳结构显著提高了材料的比表面积,并加速了电子传输过程。以核壳结构的 MCMNA/NF 纳米复合材料为工作电极,进行了电化学催化氧化试验。灵敏度为 9.37 μA-mM-1-cm-2,检测限为 0.02 mM。这些测试结果表明,该材料作为葡萄糖传感器具有出色的稳定性和选择性。MgCo2O4 和 MnO2 的协同作用可有效提高电极材料的应用性能。MgCo2O4@MnO2 葡萄糖传感器材料还具有优异的抗干扰性,在血糖检测过程中不会受到尿素、柠檬酸(CA)、抗坏血酸(AA)或特定无机盐的干扰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信