{"title":"Fabrication of MgCo2O4@MnO2 nanocomposite on nickel foam with a core-shell structure and its application for glucose measurement","authors":"Jie Zhang, Jiasheng Xu","doi":"10.1007/s43153-024-00501-8","DOIUrl":null,"url":null,"abstract":"<p>The core-shell structured nanomaterial of MgCo<sub>2</sub>O<sub>4</sub>@MnO<sub>2</sub> on nickel foam (MCMNA/NF) was synthesized via a two-step hydrothermal method. It can be used as a self-supported electrode, which was constructed to an electrochemical sensor for sensitive measurement of glucose. The core-shell structure with a MnO<sub>2</sub> shell significantly enhances the material’s specific surface area and accelerates the electron transport process. Electrochemical catalytic oxidation tests were conducted on core-shell structured MCMNA/NF nanocomposite as a working electrode. The sensitivity is determined to be 9.37 μA·mM<sup>−1</sup>·cm<sup>−2</sup> and the detection limit is 0.02 mM. These test results demonstrate that the material exhibits excellent stability and selectivity as a glucose sensor. The synergistic effect of MgCo<sub>2</sub>O<sub>4</sub> and MnO<sub>2</sub> can effectively promote the application performance of the electrode materials. The MgCo<sub>2</sub>O<sub>4</sub>@MnO<sub>2</sub> glucose sensor material also exhibits exceptional resistance to interference, demonstrating no interference from Urea, Citric acid (CA), Ascorbic acid (AA), or specific inorganic salts during blood glucose detection.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s43153-024-00501-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The core-shell structured nanomaterial of MgCo2O4@MnO2 on nickel foam (MCMNA/NF) was synthesized via a two-step hydrothermal method. It can be used as a self-supported electrode, which was constructed to an electrochemical sensor for sensitive measurement of glucose. The core-shell structure with a MnO2 shell significantly enhances the material’s specific surface area and accelerates the electron transport process. Electrochemical catalytic oxidation tests were conducted on core-shell structured MCMNA/NF nanocomposite as a working electrode. The sensitivity is determined to be 9.37 μA·mM−1·cm−2 and the detection limit is 0.02 mM. These test results demonstrate that the material exhibits excellent stability and selectivity as a glucose sensor. The synergistic effect of MgCo2O4 and MnO2 can effectively promote the application performance of the electrode materials. The MgCo2O4@MnO2 glucose sensor material also exhibits exceptional resistance to interference, demonstrating no interference from Urea, Citric acid (CA), Ascorbic acid (AA), or specific inorganic salts during blood glucose detection.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.