Yasser Leonid Cuellar-Carmona, Nestor Enrique Cerquera, Rossember Edén Cardenas-Torres, Claudia Patricia Ortiz, Fleming Martínez, Daniel Ricardo Delgado
{"title":"Correlation of the solubility of isoniazid in some aqueous cosolvent mixtures using different mathematical models","authors":"Yasser Leonid Cuellar-Carmona, Nestor Enrique Cerquera, Rossember Edén Cardenas-Torres, Claudia Patricia Ortiz, Fleming Martínez, Daniel Ricardo Delgado","doi":"10.1007/s43153-024-00489-1","DOIUrl":null,"url":null,"abstract":"<p>Solubility is one of the most important physicochemical properties, because it is related to some industrial processes such as: formulation, preformulation, purification and quantification. The experimental determination of solubility requires rigorous processes that involve a significant amount of resources. In this context, mathematical models allow estimating solubility under conditions different from the experimental ones from a limited number of data. The objective of this research was to evaluate the pertinence of 10 mathematical models (Extended Hildebrand, van’t Hoff, Two-parameter Weibull, Buchowski–Ksiazczak <span>\\(\\lambda h\\)</span>, van’t Hoff-Yaws, Apelblat, Wilson, NRTL, Modified Wilson and van’t Hoff-Modified Wilson) in the calculation of the solubility of isoniazid in PEG 200 (1) + Water (2) cosolvent mixtures, the parameters of each model were calculated using Python, Pandas and the NumPy and SciPy library. Once each model was evaluated, two models were defined as the best alternatives based on their predictive power and mathematical simplicity. Thus, the van’t Hoff and Modified Wilson models were combined to obtain an equation that allows the calculation of solubility as a function of temperature and cosolvent composition, obtaining MRD% less than 3.0. In conclusion, mathematical models represent a good prediction tool being a potential alternative in relation to the optimization of some industrial processes related to solubility.</p>","PeriodicalId":9194,"journal":{"name":"Brazilian Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s43153-024-00489-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Solubility is one of the most important physicochemical properties, because it is related to some industrial processes such as: formulation, preformulation, purification and quantification. The experimental determination of solubility requires rigorous processes that involve a significant amount of resources. In this context, mathematical models allow estimating solubility under conditions different from the experimental ones from a limited number of data. The objective of this research was to evaluate the pertinence of 10 mathematical models (Extended Hildebrand, van’t Hoff, Two-parameter Weibull, Buchowski–Ksiazczak \(\lambda h\), van’t Hoff-Yaws, Apelblat, Wilson, NRTL, Modified Wilson and van’t Hoff-Modified Wilson) in the calculation of the solubility of isoniazid in PEG 200 (1) + Water (2) cosolvent mixtures, the parameters of each model were calculated using Python, Pandas and the NumPy and SciPy library. Once each model was evaluated, two models were defined as the best alternatives based on their predictive power and mathematical simplicity. Thus, the van’t Hoff and Modified Wilson models were combined to obtain an equation that allows the calculation of solubility as a function of temperature and cosolvent composition, obtaining MRD% less than 3.0. In conclusion, mathematical models represent a good prediction tool being a potential alternative in relation to the optimization of some industrial processes related to solubility.
期刊介绍:
The Brazilian Journal of Chemical Engineering is a quarterly publication of the Associação Brasileira de Engenharia Química (Brazilian Society of Chemical Engineering - ABEQ) aiming at publishing papers reporting on basic and applied research and innovation in the field of chemical engineering and related areas.