B. T. Ratov, V. A. Mechnik, E. S. Gevorkyan, N. A. Bondarenko, V. M. Kolodnitskyi, N. S. Akhmetova, D. L. Korostyshevskyi, R. U. Bayamirova
{"title":"Investigating the Wear Resistance of Cdiamond–(WC–Co)–ZrO2 Composite Impregnated Crowns in Granite Drilling","authors":"B. T. Ratov, V. A. Mechnik, E. S. Gevorkyan, N. A. Bondarenko, V. M. Kolodnitskyi, N. S. Akhmetova, D. L. Korostyshevskyi, R. U. Bayamirova","doi":"10.3103/S1063457624040099","DOIUrl":null,"url":null,"abstract":"<p>The study investigated the wear rate dependences of diamond-impregnated drill bits consisting of composite diamond-containing materials (CDMs): specifically, 25C<sub>diamond</sub>–70.5WC–4.5Co and 25C<sub>diamond</sub>–68.62WC–4.38Co‒2ZrO<sub>2</sub>. These materials were fabricated via spark plasma sintering at temperatures ranging from 20 to 1350°C under a pressure of 30 MPa for 3 min. Testing was conducted under rotational speeds and axial load conditions typical for granite drilling. It was demonstrated that incorporating 2 wt % of ZrO<sub>2</sub> nanopowder into the composition of 25C<sub>diamond</sub>–70.5WC–4.5Co resulted in a threefold reduction in wear rate. The highest wear resistance of these diamond-impregnated drill bits was observed at rotational speeds of 250 rpm and axial loads of 900 kg, as well as at 750 rpm and 1250 kg axial load. Comparatively, the enhanced wear resistance of diamond-impregnated drill bits made from 25C<sub>diamond</sub>–68.62WC–4.38Co‒2ZrO<sub>2</sub>, in contrast to those made from 25C<sub>diamond</sub>–70.5WC–4.5Co, can be attributed to factors such as finer grain size, higher relative density, improved strength under compression and bending, increased fracture toughness, and the formation of strong bonding between diamond grains and the hard-alloy matrix. These findings, combined with the fine-grained structure of the hard-alloy matrix and high diamond retention, indicate that these diamond-impregnated drill bits have potential for application in developing new tools with superior operational properties for drilling hard rock formations.</p>","PeriodicalId":670,"journal":{"name":"Journal of Superhard Materials","volume":"46 4","pages":"314 - 321"},"PeriodicalIF":1.2000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superhard Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.3103/S1063457624040099","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The study investigated the wear rate dependences of diamond-impregnated drill bits consisting of composite diamond-containing materials (CDMs): specifically, 25Cdiamond–70.5WC–4.5Co and 25Cdiamond–68.62WC–4.38Co‒2ZrO2. These materials were fabricated via spark plasma sintering at temperatures ranging from 20 to 1350°C under a pressure of 30 MPa for 3 min. Testing was conducted under rotational speeds and axial load conditions typical for granite drilling. It was demonstrated that incorporating 2 wt % of ZrO2 nanopowder into the composition of 25Cdiamond–70.5WC–4.5Co resulted in a threefold reduction in wear rate. The highest wear resistance of these diamond-impregnated drill bits was observed at rotational speeds of 250 rpm and axial loads of 900 kg, as well as at 750 rpm and 1250 kg axial load. Comparatively, the enhanced wear resistance of diamond-impregnated drill bits made from 25Cdiamond–68.62WC–4.38Co‒2ZrO2, in contrast to those made from 25Cdiamond–70.5WC–4.5Co, can be attributed to factors such as finer grain size, higher relative density, improved strength under compression and bending, increased fracture toughness, and the formation of strong bonding between diamond grains and the hard-alloy matrix. These findings, combined with the fine-grained structure of the hard-alloy matrix and high diamond retention, indicate that these diamond-impregnated drill bits have potential for application in developing new tools with superior operational properties for drilling hard rock formations.
期刊介绍:
Journal of Superhard Materials presents up-to-date results of basic and applied research on production, properties, and applications of superhard materials and related tools. It publishes the results of fundamental research on physicochemical processes of forming and growth of single-crystal, polycrystalline, and dispersed materials, diamond and diamond-like films; developments of methods for spontaneous and controlled synthesis of superhard materials and methods for static, explosive and epitaxial synthesis. The focus of the journal is large single crystals of synthetic diamonds; elite grinding powders and micron powders of synthetic diamonds and cubic boron nitride; polycrystalline and composite superhard materials based on diamond and cubic boron nitride; diamond and carbide tools for highly efficient metal-working, boring, stone-working, coal mining and geological exploration; articles of ceramic; polishing pastes for high-precision optics; precision lathes for diamond turning; technologies of precise machining of metals, glass, and ceramics. The journal covers all fundamental and technological aspects of synthesis, characterization, properties, devices and applications of these materials. The journal welcomes manuscripts from all countries in the English language.