Discovering and measuring giant trees through the integration of multi-platform lidar data

IF 6.3 2区 环境科学与生态学 Q1 ECOLOGY
Yu Ren, Hongcan Guan, Haitao Yang, Yanjun Su, Shengli Tao, Kai Cheng, Wenkai Li, Zekun Yang, Guoran Huang, Cheng Li, Guangcai Xu, Zhi Lu, Qinghua Guo
{"title":"Discovering and measuring giant trees through the integration of multi-platform lidar data","authors":"Yu Ren,&nbsp;Hongcan Guan,&nbsp;Haitao Yang,&nbsp;Yanjun Su,&nbsp;Shengli Tao,&nbsp;Kai Cheng,&nbsp;Wenkai Li,&nbsp;Zekun Yang,&nbsp;Guoran Huang,&nbsp;Cheng Li,&nbsp;Guangcai Xu,&nbsp;Zhi Lu,&nbsp;Qinghua Guo","doi":"10.1111/2041-210X.14401","DOIUrl":null,"url":null,"abstract":"<p>\n \n </p>","PeriodicalId":208,"journal":{"name":"Methods in Ecology and Evolution","volume":"15 10","pages":"1889-1905"},"PeriodicalIF":6.3000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/2041-210X.14401","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in Ecology and Evolution","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/2041-210X.14401","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Image

通过整合多平台激光雷达数据发现和测量巨树
巨树在森林生态系统中举足轻重,但我们目前对其重要性的认识主要受限于对其精确位置和结构特征的有限了解。在全球人为干扰不断升级的情况下,我们迫切需要设计一种实用的方法来准确有效地发现和测量巨树。在此,我们提出了一种基于光探测和测距(激光雷达)的新型框架,用于发现和测量巨树。我们的框架整合了最先进的激光雷达平台,包括机载激光雷达、无人机激光雷达和背负式激光雷达,创建了一个端到端的工作流程。拟议框架中涉及的算法已编译成一个代码包,并以开放源代码的形式提供。该方法成功识别了中国最高的树木,包括2023年5月在雅鲁藏布大峡谷发现的亚洲最高树--高达102.3米的濯缨树。这一发现不仅创造了新的记录,也证明了我们提出的框架的有效性。利用激光雷达数据,我们对个体和树丛进行了细致的测量,揭示了这棵巨树的独特特征。新的巨树发现和测量框架包含详细的程序和代码,有望促进巨树的高效发现和测量,从而推动巨树生态学的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.60
自引率
3.00%
发文量
236
审稿时长
4-8 weeks
期刊介绍: A British Ecological Society journal, Methods in Ecology and Evolution (MEE) promotes the development of new methods in ecology and evolution, and facilitates their dissemination and uptake by the research community. MEE brings together papers from previously disparate sub-disciplines to provide a single forum for tracking methodological developments in all areas. MEE publishes methodological papers in any area of ecology and evolution, including: -Phylogenetic analysis -Statistical methods -Conservation & management -Theoretical methods -Practical methods, including lab and field -This list is not exhaustive, and we welcome enquiries about possible submissions. Methods are defined in the widest terms and may be analytical, practical or conceptual. A primary aim of the journal is to maximise the uptake of techniques by the community. We recognise that a major stumbling block in the uptake and application of new methods is the accessibility of methods. For example, users may need computer code, example applications or demonstrations of methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信