Domination in Diameter-Two Graphs and the 2-Club Cluster Vertex Deletion Parameter

Faisal N. Abu-Khzam, Lucas Isenmann
{"title":"Domination in Diameter-Two Graphs and the 2-Club Cluster Vertex Deletion Parameter","authors":"Faisal N. Abu-Khzam, Lucas Isenmann","doi":"arxiv-2408.08418","DOIUrl":null,"url":null,"abstract":"The s-club cluster vertex deletion number of a graph, or sccvd, is the\nminimum number of vertices whose deletion results in a disjoint union of\ns-clubs, or graphs whose diameter is bounded above by s. We launch a study of\nseveral domination problems on diameter-two graphs, or 2-clubs, and study their\nparameterized complexity with respect to the 2ccvd number as main parameter. We\nfurther propose to explore the class of problems that become solvable in\nsub-exponential time when the running time is independent of some input\nparameter. Hardness of problems for this class depends on the Exponential-Time\nHypothesis. We give examples of problems that are in the proposed class and\nproblems that are hard for it.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.08418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The s-club cluster vertex deletion number of a graph, or sccvd, is the minimum number of vertices whose deletion results in a disjoint union of s-clubs, or graphs whose diameter is bounded above by s. We launch a study of several domination problems on diameter-two graphs, or 2-clubs, and study their parameterized complexity with respect to the 2ccvd number as main parameter. We further propose to explore the class of problems that become solvable in sub-exponential time when the running time is independent of some input parameter. Hardness of problems for this class depends on the Exponential-Time Hypothesis. We give examples of problems that are in the proposed class and problems that are hard for it.
直径二图谱中的支配作用和 2-Club 簇顶点删除参数
一个图的s-club簇顶点删除数,或称sccvd,是指删除后导致club或直径以s为边界的图的不相联的顶点的最小数目。我们对直径为2的图或2-club上的若干支配问题展开了研究,并以2ccvd数为主要参数研究了它们的参数化复杂度。我们还提议探索一类问题,当运行时间与某些输入参数无关时,这些问题可以在次指数时间内求解。这类问题的难易程度取决于指数时间假设。我们将举例说明该类问题的难易程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信