{"title":"Minimal zero entropy subshifts can be unrestricted along any sparse set","authors":"RONNIE PAVLOV","doi":"10.1017/etds.2024.42","DOIUrl":null,"url":null,"abstract":"We present a streamlined proof of a result essentially presented by the author in [Some counterexamples in topological dynamics. <jats:italic>Ergod. Th. & Dynam. Sys.</jats:italic>28(4) (2008), 1291–1322], namely that for every set <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000427_inline1.png\"/> <jats:tex-math> $S = \\{s_1, s_2, \\ldots \\} \\subset \\mathbb {N}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of zero Banach density and finite set <jats:italic>A</jats:italic>, there exists a minimal zero-entropy subshift <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000427_inline2.png\"/> <jats:tex-math> $(X, \\sigma )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> so that for every sequence <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000427_inline3.png\"/> <jats:tex-math> $u \\in A^{\\mathbb {Z}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, there is <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000427_inline4.png\"/> <jats:tex-math> $x_u \\in X$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000427_inline5.png\"/> <jats:tex-math> $x_u(s_n) = u(n)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for all <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000427_inline6.png\"/> <jats:tex-math> $n \\in \\mathbb {N}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Informally, minimal deterministic sequences can achieve completely arbitrary behavior upon restriction to a set of zero Banach density. As a corollary, this provides counterexamples to the polynomial Sarnak conjecture reported by Eisner [A polynomial version of Sarnak’s conjecture. <jats:italic>C. R. Math. Acad. Sci. Paris</jats:italic>353(7) (2015), 569–572] which are significantly more general than some recently provided by Kanigowski, Lemańczyk and Radziwiłł [Prime number theorem for analytic skew products. <jats:italic>Ann. of Math. (2)</jats:italic>199 (2024), 591–705] and by Lian and Shi [A counter-example for polynomial version of Sarnak’s conjecture. <jats:italic>Adv. Math.</jats:italic>384 (2021), Paper no. 107765] and shows that no similar result can hold under only the assumptions of minimality and zero entropy.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We present a streamlined proof of a result essentially presented by the author in [Some counterexamples in topological dynamics. Ergod. Th. & Dynam. Sys.28(4) (2008), 1291–1322], namely that for every set $S = \{s_1, s_2, \ldots \} \subset \mathbb {N}$ of zero Banach density and finite set A, there exists a minimal zero-entropy subshift $(X, \sigma )$ so that for every sequence $u \in A^{\mathbb {Z}}$ , there is $x_u \in X$ with $x_u(s_n) = u(n)$ for all $n \in \mathbb {N}$ . Informally, minimal deterministic sequences can achieve completely arbitrary behavior upon restriction to a set of zero Banach density. As a corollary, this provides counterexamples to the polynomial Sarnak conjecture reported by Eisner [A polynomial version of Sarnak’s conjecture. C. R. Math. Acad. Sci. Paris353(7) (2015), 569–572] which are significantly more general than some recently provided by Kanigowski, Lemańczyk and Radziwiłł [Prime number theorem for analytic skew products. Ann. of Math. (2)199 (2024), 591–705] and by Lian and Shi [A counter-example for polynomial version of Sarnak’s conjecture. Adv. Math.384 (2021), Paper no. 107765] and shows that no similar result can hold under only the assumptions of minimality and zero entropy.