Minimal zero entropy subshifts can be unrestricted along any sparse set

Pub Date : 2024-09-09 DOI:10.1017/etds.2024.42
RONNIE PAVLOV
{"title":"Minimal zero entropy subshifts can be unrestricted along any sparse set","authors":"RONNIE PAVLOV","doi":"10.1017/etds.2024.42","DOIUrl":null,"url":null,"abstract":"We present a streamlined proof of a result essentially presented by the author in [Some counterexamples in topological dynamics. <jats:italic>Ergod. Th. &amp; Dynam. Sys.</jats:italic>28(4) (2008), 1291–1322], namely that for every set <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000427_inline1.png\"/> <jats:tex-math> $S = \\{s_1, s_2, \\ldots \\} \\subset \\mathbb {N}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of zero Banach density and finite set <jats:italic>A</jats:italic>, there exists a minimal zero-entropy subshift <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000427_inline2.png\"/> <jats:tex-math> $(X, \\sigma )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> so that for every sequence <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000427_inline3.png\"/> <jats:tex-math> $u \\in A^{\\mathbb {Z}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, there is <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000427_inline4.png\"/> <jats:tex-math> $x_u \\in X$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000427_inline5.png\"/> <jats:tex-math> $x_u(s_n) = u(n)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for all <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000427_inline6.png\"/> <jats:tex-math> $n \\in \\mathbb {N}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Informally, minimal deterministic sequences can achieve completely arbitrary behavior upon restriction to a set of zero Banach density. As a corollary, this provides counterexamples to the polynomial Sarnak conjecture reported by Eisner [A polynomial version of Sarnak’s conjecture. <jats:italic>C. R. Math. Acad. Sci. Paris</jats:italic>353(7) (2015), 569–572] which are significantly more general than some recently provided by Kanigowski, Lemańczyk and Radziwiłł [Prime number theorem for analytic skew products. <jats:italic>Ann. of Math. (2)</jats:italic>199 (2024), 591–705] and by Lian and Shi [A counter-example for polynomial version of Sarnak’s conjecture. <jats:italic>Adv. Math.</jats:italic>384 (2021), Paper no. 107765] and shows that no similar result can hold under only the assumptions of minimality and zero entropy.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a streamlined proof of a result essentially presented by the author in [Some counterexamples in topological dynamics. Ergod. Th. & Dynam. Sys.28(4) (2008), 1291–1322], namely that for every set $S = \{s_1, s_2, \ldots \} \subset \mathbb {N}$ of zero Banach density and finite set A, there exists a minimal zero-entropy subshift $(X, \sigma )$ so that for every sequence $u \in A^{\mathbb {Z}}$ , there is $x_u \in X$ with $x_u(s_n) = u(n)$ for all $n \in \mathbb {N}$ . Informally, minimal deterministic sequences can achieve completely arbitrary behavior upon restriction to a set of zero Banach density. As a corollary, this provides counterexamples to the polynomial Sarnak conjecture reported by Eisner [A polynomial version of Sarnak’s conjecture. C. R. Math. Acad. Sci. Paris353(7) (2015), 569–572] which are significantly more general than some recently provided by Kanigowski, Lemańczyk and Radziwiłł [Prime number theorem for analytic skew products. Ann. of Math. (2)199 (2024), 591–705] and by Lian and Shi [A counter-example for polynomial version of Sarnak’s conjecture. Adv. Math.384 (2021), Paper no. 107765] and shows that no similar result can hold under only the assumptions of minimality and zero entropy.
分享
查看原文
最小零熵子移动可以沿任意稀疏集合不受限制地进行
我们对作者在 [Some counterexamples in topological dynamics.Ergod.Th. & Dynam.Sys.28(4)(2008),1291-1322],即对于每一个集合 $S = \{s_1, s_2, \ldots \}\和有限集 A,存在一个最小零熵子移位 $(X, \sigma )$,这样对于 A^{\mathbb {Z}}$ 中的每一个序列 $u ,在 X$ 中存在 $x_u \,对于 \mathbb {N}$ 中的所有 $n ,具有 $x_u(s_n) = u(n)$。非正式地讲,最小确定性序列在限制到零巴纳赫密度集合时可以实现完全任意的行为。作为推论,这为艾斯纳报告的多项式萨尔纳克猜想提供了反例 [A polynomial version of Sarnak's conjecture.C. R. Math.Acad.Sci. Paris353(7) (2015),569-572] 所报告的猜想比卡尼戈夫斯基、莱曼奇克和拉齐维乌最近提供的一些猜想要宽泛得多 [Prime number theorem for analytic skew products.(2)199 (2024), 591-705] 以及 Lian 和 Shi [A counter-example for polynomial version of Sarnak's conjecture.Adv. Math.384 (2021), Paper no.107765],并表明仅在最小性和零熵假设条件下,类似结果不可能成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信