Symbolic dynamics for pointwise hyperbolic systems on open regions

Pub Date : 2024-09-10 DOI:10.1017/etds.2024.47
CHUPENG WU, YUNHUA ZHOU
{"title":"Symbolic dynamics for pointwise hyperbolic systems on open regions","authors":"CHUPENG WU, YUNHUA ZHOU","doi":"10.1017/etds.2024.47","DOIUrl":null,"url":null,"abstract":"Under certain conditions, we construct a countable Markov partition for pointwise hyperbolic diffeomorphism <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000476_inline1.png\"/> <jats:tex-math> $f:M\\rightarrow M$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> on an open invariant subset <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000476_inline2.png\"/> <jats:tex-math> $O\\subset M$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, which allows the Lyapunov exponents to be zero. From this partition, we define a symbolic extension that is finite-to-one and onto a subset of <jats:italic>O</jats:italic> that carries the same finite <jats:italic>f</jats:italic>-invariant measures as <jats:italic>O</jats:italic>. Our method relies upon shadowing theory of a recurrent-pointwise-pseudo-orbit that we introduce. As a canonical application, we estimate the number of closed orbits for <jats:italic>f</jats:italic>.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Under certain conditions, we construct a countable Markov partition for pointwise hyperbolic diffeomorphism $f:M\rightarrow M$ on an open invariant subset $O\subset M$ , which allows the Lyapunov exponents to be zero. From this partition, we define a symbolic extension that is finite-to-one and onto a subset of O that carries the same finite f-invariant measures as O. Our method relies upon shadowing theory of a recurrent-pointwise-pseudo-orbit that we introduce. As a canonical application, we estimate the number of closed orbits for f.
分享
查看原文
开放区域上点双曲系统的符号动力学
在某些条件下,我们在开放不变子集 $O\subset M$ 上为点式双曲衍射 $f:M\rightarrow M$ 构造了一个可数马尔可夫分区,它允许 Lyapunov 指数为零。从这个分区出发,我们定义了一个符号扩展,它是有限对一的,并扩展到 O 的一个子集上,该子集携带与 O 相同的有限 f 不变度量。作为一个典型应用,我们估算了 f 的闭合轨道数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信