Multiplication cubes and multiplication automata

Pub Date : 2024-09-10 DOI:10.1017/etds.2024.44
JOHAN KOPRA
{"title":"Multiplication cubes and multiplication automata","authors":"JOHAN KOPRA","doi":"10.1017/etds.2024.44","DOIUrl":null,"url":null,"abstract":"We extend previously known two-dimensional multiplication tiling systems that simulate multiplication by two natural numbers <jats:italic>p</jats:italic> and <jats:italic>q</jats:italic> in base <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000440_inline1.png\"/> <jats:tex-math> $pq$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> to higher dimensional multiplication tessellation systems. We develop the theory of these systems and link different multiplication tessellation systems with each other via macrotile operations that glue cubes in one tessellation system into larger cubes of another tessellation system. The macrotile operations yield topological conjugacies and factor maps between cellular automata performing multiplication by positive numbers in various bases.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We extend previously known two-dimensional multiplication tiling systems that simulate multiplication by two natural numbers p and q in base $pq$ to higher dimensional multiplication tessellation systems. We develop the theory of these systems and link different multiplication tessellation systems with each other via macrotile operations that glue cubes in one tessellation system into larger cubes of another tessellation system. The macrotile operations yield topological conjugacies and factor maps between cellular automata performing multiplication by positive numbers in various bases.
分享
查看原文
乘法立方体和乘法自动机
我们将以前已知的模拟两个自然数 p 和 q 以 $pq$ 为基数相乘的二维乘法镶嵌系统扩展到高维乘法镶嵌系统。我们发展了这些系统的理论,并通过宏梯形运算将不同的乘法镶嵌系统相互连接起来,宏梯形运算可将一个镶嵌系统中的立方体粘合到另一个镶嵌系统的更大立方体中。巨型运算产生了拓扑共轭,以及在不同基数下执行正数乘法的细胞自动机之间的因子映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信