Spectrum invariance dilemma for nonuniformly kinematically similar systems

IF 1.3 2区 数学 Q1 MATHEMATICS
Néstor Jara, Claudio A. Gallegos
{"title":"Spectrum invariance dilemma for nonuniformly kinematically similar systems","authors":"Néstor Jara, Claudio A. Gallegos","doi":"10.1007/s00208-024-02969-8","DOIUrl":null,"url":null,"abstract":"<p>We unveil instances where nonautonomous linear systems manifest distinct nonuniform <span>\\(\\mu \\)</span>-dichotomy spectra despite admitting nonuniform <span>\\((\\mu , \\varepsilon )\\)</span>-kinematic similarity. Exploring the theoretical foundations of this lack of invariance, we discern the pivotal influence of the parameters involved in the property of nonuniform <span>\\(\\mu \\)</span>-dichotomy such as in the notion of nonuniform <span>\\((\\mu , \\varepsilon )\\)</span>-kinematic similarity. To effectively comprehend these dynamics, we introduce the stable and unstable optimal ratio maps, along with the <span>\\(\\varepsilon \\)</span>-neighborhood of the nonuniform <span>\\(\\mu \\)</span>-dichotomy spectrum. These new concepts provide a framework for understanding scenarios governed by the noninvariance of the nonuniform <span>\\(\\mu \\)</span>-dichotomy spectrum.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"24 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02969-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We unveil instances where nonautonomous linear systems manifest distinct nonuniform \(\mu \)-dichotomy spectra despite admitting nonuniform \((\mu , \varepsilon )\)-kinematic similarity. Exploring the theoretical foundations of this lack of invariance, we discern the pivotal influence of the parameters involved in the property of nonuniform \(\mu \)-dichotomy such as in the notion of nonuniform \((\mu , \varepsilon )\)-kinematic similarity. To effectively comprehend these dynamics, we introduce the stable and unstable optimal ratio maps, along with the \(\varepsilon \)-neighborhood of the nonuniform \(\mu \)-dichotomy spectrum. These new concepts provide a framework for understanding scenarios governed by the noninvariance of the nonuniform \(\mu \)-dichotomy spectrum.

Abstract Image

非均匀运动学相似系统的频谱不变性困境
我们揭示了一些非自治线性系统尽管具有非均匀((\mu , \varepsilon ))运动学相似性,却表现出不同的非均匀((\mu )-二分谱)的情况。在探索这种缺乏不变性的理论基础时,我们发现了非均匀((\mu \)-二分法属性中涉及的参数的关键影响,比如非均匀(((\mu , \varepsilon )-运动学相似性的概念。为了有效地理解这些动态,我们引入了稳定和不稳定的最优比率图,以及非均匀((\mu)-二分法谱的((\varepsilon)-邻域)。这些新概念为理解非均匀二分频谱的非不变性所支配的情景提供了一个框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信