Mappings of finite distortion on metric surfaces

IF 1.3 2区 数学 Q1 MATHEMATICS
Damaris Meier, Kai Rajala
{"title":"Mappings of finite distortion on metric surfaces","authors":"Damaris Meier, Kai Rajala","doi":"10.1007/s00208-024-02972-z","DOIUrl":null,"url":null,"abstract":"<p>We investigate basic properties of <i>mappings of finite distortion</i> <span>\\(f:X \\rightarrow \\mathbb {R}^2\\)</span>, where <i>X</i> is any <i>metric surface</i>, i.e., metric space homeomorphic to a planar domain with locally finite 2-dimensional Hausdorff measure. We introduce <i>lower gradients</i>, which complement the upper gradients of Heinonen and Koskela, to study the distortion of non-homeomorphic maps on metric spaces. We extend the Iwaniec-Šverák theorem to metric surfaces: a non-constant <span>\\(f:X \\rightarrow \\mathbb {R}^2\\)</span> with locally square integrable upper gradient and locally integrable distortion is continuous, open and discrete. We also extend the Hencl-Koskela theorem by showing that if <i>f</i> is moreover injective then <span>\\(f^{-1}\\)</span> is a Sobolev map.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"9 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02972-z","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate basic properties of mappings of finite distortion \(f:X \rightarrow \mathbb {R}^2\), where X is any metric surface, i.e., metric space homeomorphic to a planar domain with locally finite 2-dimensional Hausdorff measure. We introduce lower gradients, which complement the upper gradients of Heinonen and Koskela, to study the distortion of non-homeomorphic maps on metric spaces. We extend the Iwaniec-Šverák theorem to metric surfaces: a non-constant \(f:X \rightarrow \mathbb {R}^2\) with locally square integrable upper gradient and locally integrable distortion is continuous, open and discrete. We also extend the Hencl-Koskela theorem by showing that if f is moreover injective then \(f^{-1}\) is a Sobolev map.

度量曲面上的有限变形映射
我们研究有限失真映射的基本性质(f:X \rightarrow \mathbb {R}^2\),其中 X 是任意度量面,即同构于局部有限二维豪斯多夫度量的平面域的度量空间。我们引入了下梯度,它是对海诺宁和科斯克拉的上梯度的补充,用于研究度量空间上非同构映射的变形。我们将 Iwaniec-Šverák 定理扩展到了度量曲面:具有局部平方可积分上梯度和局部可积分扭曲的非常数 \(f:X \rightarrow \mathbb {R}^2\) 是连续的、开放的和离散的。我们还扩展了 Hencl-Koskela 定理,证明如果 f 还是注入式的,那么 \(f^{-1}\) 就是一个 Sobolev 映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信