The Galvin property under the ultrapower axiom

Tom Benhamou, Gabriel Goldberg
{"title":"The Galvin property under the ultrapower axiom","authors":"Tom Benhamou, Gabriel Goldberg","doi":"10.4153/s0008414x2400052x","DOIUrl":null,"url":null,"abstract":"<p>We continue the study of the Galvin property from Benhamou, Garti, and Shelah (2023, <span>Proceedings of the American Mathematical Society</span> 151, 1301–1309) and Benhamou (2023, <span>Saturation properties in canonical inner models</span>, submitted). In particular, we deepen the connection between certain diamond-like principles and non-Galvin ultrafilters. We also show that any Dodd sound non <span>p</span>-point ultrafilter is non-Galvin. We use these ideas to formulate what appears to be the optimal large cardinal hypothesis implying the existence of a non-Galvin ultrafilter, improving on a result from Benhamou and Dobrinen (2023, <span>Journal of Symbolic Logic</span>, 1–34). Finally, we use a strengthening of the Ultrapower Axiom to prove that in all the known canonical inner models, a <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160454271-0394:S0008414X2400052X:S0008414X2400052X_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\kappa $</span></span></img></span></span>-complete ultrafilter has the Galvin property if and only if it is an iterated sum of <span>p</span>-points.</p>","PeriodicalId":501820,"journal":{"name":"Canadian Journal of Mathematics","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x2400052x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We continue the study of the Galvin property from Benhamou, Garti, and Shelah (2023, Proceedings of the American Mathematical Society 151, 1301–1309) and Benhamou (2023, Saturation properties in canonical inner models, submitted). In particular, we deepen the connection between certain diamond-like principles and non-Galvin ultrafilters. We also show that any Dodd sound non p-point ultrafilter is non-Galvin. We use these ideas to formulate what appears to be the optimal large cardinal hypothesis implying the existence of a non-Galvin ultrafilter, improving on a result from Benhamou and Dobrinen (2023, Journal of Symbolic Logic, 1–34). Finally, we use a strengthening of the Ultrapower Axiom to prove that in all the known canonical inner models, a Abstract Image$\kappa $-complete ultrafilter has the Galvin property if and only if it is an iterated sum of p-points.

超幂公理下的高尔文性质
我们继续研究本哈穆、加尔蒂和谢拉赫(2023,《美国数学会论文集》151,1301-1309)以及本哈穆(2023,《典型内模型中的饱和性质》,已提交)的高尔文性质。我们特别深化了某些类金刚石原理与非加尔文超滤波器之间的联系。我们还证明了任何多德声非 p 点超滤波器都是非加尔文的。我们利用这些观点提出了似乎是暗示非加尔文超滤波器存在的最优大底假设,改进了本哈穆和多布里宁(Benhamou and Dobrinen)的一个结果(2023 年,《符号逻辑杂志》,1-34)。最后,我们利用超幂公理的强化证明,在所有已知的典范内部模型中,当且仅当一个 $\kappa $ 完整超滤波器是 p 点的迭代和时,它才具有高尔文性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信