Xiaowu Zhou, Song Yang, Zhiguo Ma, Zubin Ai, Zhigang Tao, Qiru Sui
{"title":"A Comparative Study of Soft Rock Tunnel Control Methods Using NPR High Preload Anchor Cables: Analysis of Multiple Cases","authors":"Xiaowu Zhou, Song Yang, Zhiguo Ma, Zubin Ai, Zhigang Tao, Qiru Sui","doi":"10.1007/s12205-024-1377-9","DOIUrl":null,"url":null,"abstract":"<p>Addressing the challenge of large deformation in soft rock tunnels is an urgent imperative. The conventional support method is mainly passive or low-stress compensation support, which proves inadequate in effectively managing the large deformation disaster of soft rock under complex geological conditions. This paper focuses on three representative soft rock tunnel scenarios characterized by slate, schist, and metamorphic rock lithologies. The primary objective is to conduct a comprehensive comparative analysis of the efficacy of the NPR (negative Poisson’s ratio effect) anchor cable high preload support system based on the excavation compensation method. The results indicate that the NPR high preload support method adeptly controls large deformation disasters in soft rock, maintaining tunnel surrounding rock deformation within 300 mm (<3%). To achieve efficient high-stress compensation through high preload, supporting technologies should be designed for different geological conditions, exemplified by the implementation of double-gradient grouting technology in the Tabaiyi tunnel. This paper comprehensively validates the effectiveness of the NPR high preload support method in mitigating large deformations in soft rock and establishes a foundation for future engineering endeavors.</p>","PeriodicalId":17897,"journal":{"name":"KSCE Journal of Civil Engineering","volume":"9 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"KSCE Journal of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12205-024-1377-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Addressing the challenge of large deformation in soft rock tunnels is an urgent imperative. The conventional support method is mainly passive or low-stress compensation support, which proves inadequate in effectively managing the large deformation disaster of soft rock under complex geological conditions. This paper focuses on three representative soft rock tunnel scenarios characterized by slate, schist, and metamorphic rock lithologies. The primary objective is to conduct a comprehensive comparative analysis of the efficacy of the NPR (negative Poisson’s ratio effect) anchor cable high preload support system based on the excavation compensation method. The results indicate that the NPR high preload support method adeptly controls large deformation disasters in soft rock, maintaining tunnel surrounding rock deformation within 300 mm (<3%). To achieve efficient high-stress compensation through high preload, supporting technologies should be designed for different geological conditions, exemplified by the implementation of double-gradient grouting technology in the Tabaiyi tunnel. This paper comprehensively validates the effectiveness of the NPR high preload support method in mitigating large deformations in soft rock and establishes a foundation for future engineering endeavors.
期刊介绍:
The KSCE Journal of Civil Engineering is a technical bimonthly journal of the Korean Society of Civil Engineers. The journal reports original study results (both academic and practical) on past practices and present information in all civil engineering fields.
The journal publishes original papers within the broad field of civil engineering, which includes, but are not limited to, the following: coastal and harbor engineering, construction management, environmental engineering, geotechnical engineering, highway engineering, hydraulic engineering, information technology, nuclear power engineering, railroad engineering, structural engineering, surveying and geo-spatial engineering, transportation engineering, tunnel engineering, and water resources and hydrologic engineering