Application of MGGP in Predicting Bearing Capacity of a Strip Footing Resting on the Crest of a Marginal Soil Hillslope

IF 1.9 4区 工程技术 Q3 ENGINEERING, CIVIL
Rana Acharyya, Arindam Dey
{"title":"Application of MGGP in Predicting Bearing Capacity of a Strip Footing Resting on the Crest of a Marginal Soil Hillslope","authors":"Rana Acharyya, Arindam Dey","doi":"10.1007/s12205-024-1217-y","DOIUrl":null,"url":null,"abstract":"<p>A set of finite element investigations are performed to examine the maximum bearing strength of strip footings positioned on the crest of a cohesive-frictional marginal soil hillslope. In this regard, the influence of contributing geometrical and geotechnical parameters on the maximum bearing strength of the footing are illustrated. It is revealed that the nearness of slope face has negligible influence on the bearing strength of footing if it is located at a setback distance beyond six times the footing width. Further, using multi-gene genetic programming technique, a predictive relationship between the maximum bearing strength and the contributory factors is established and validated through relevant experimental findings. The hyper-parameters of the MGGP model are suitably optimized, as indicated by the coefficient of correlation attaining high magnitudes. A sensitivity analysis based on local perturbation is conducted to recognize the importance ranking of the contributory parameters. It is revealed that the friction angle of slope material predominantly influences the evaluation of maximum bearing strength for strip footing on slopes, followed by other contributing factors.</p>","PeriodicalId":17897,"journal":{"name":"KSCE Journal of Civil Engineering","volume":"10 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"KSCE Journal of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12205-024-1217-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

A set of finite element investigations are performed to examine the maximum bearing strength of strip footings positioned on the crest of a cohesive-frictional marginal soil hillslope. In this regard, the influence of contributing geometrical and geotechnical parameters on the maximum bearing strength of the footing are illustrated. It is revealed that the nearness of slope face has negligible influence on the bearing strength of footing if it is located at a setback distance beyond six times the footing width. Further, using multi-gene genetic programming technique, a predictive relationship between the maximum bearing strength and the contributory factors is established and validated through relevant experimental findings. The hyper-parameters of the MGGP model are suitably optimized, as indicated by the coefficient of correlation attaining high magnitudes. A sensitivity analysis based on local perturbation is conducted to recognize the importance ranking of the contributory parameters. It is revealed that the friction angle of slope material predominantly influences the evaluation of maximum bearing strength for strip footing on slopes, followed by other contributing factors.

应用 MGGP 预测边际土壤山坡顶上带状基脚的承载能力
对位于粘性-摩擦性边缘土山坡坡顶上的条形基脚的最大承载强度进行了一系列有限元研究。在这方面,说明了几何参数和岩土参数对基脚最大承载力的影响。结果表明,如果坡面的后退距离超过基脚宽度的六倍,则坡面距离对基脚承载力的影响可以忽略不计。此外,利用多基因遗传编程技术,建立了最大承载强度与促成因素之间的预测关系,并通过相关实验结果进行了验证。MGGP 模型的超参数得到了适当优化,相关系数达到了较高水平。在局部扰动的基础上进行了敏感性分析,以确定各贡献参数的重要性排序。结果表明,斜坡材料的摩擦角对斜坡上条形坡脚最大承载力的评估影响最大,其次是其他影响因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
KSCE Journal of Civil Engineering
KSCE Journal of Civil Engineering ENGINEERING, CIVIL-
CiteScore
4.00
自引率
9.10%
发文量
329
审稿时长
4.8 months
期刊介绍: The KSCE Journal of Civil Engineering is a technical bimonthly journal of the Korean Society of Civil Engineers. The journal reports original study results (both academic and practical) on past practices and present information in all civil engineering fields. The journal publishes original papers within the broad field of civil engineering, which includes, but are not limited to, the following: coastal and harbor engineering, construction management, environmental engineering, geotechnical engineering, highway engineering, hydraulic engineering, information technology, nuclear power engineering, railroad engineering, structural engineering, surveying and geo-spatial engineering, transportation engineering, tunnel engineering, and water resources and hydrologic engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信