{"title":"NONDEFINABILITY RESULTS FOR ELLIPTIC AND MODULAR FUNCTIONS","authors":"RAYMOND MCCULLOCH","doi":"10.1017/jsl.2024.22","DOIUrl":null,"url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904075918471-0566:S0022481224000227:S0022481224000227_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\Omega $</span></span></img></span></span> be a complex lattice which does not have complex multiplication and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904075918471-0566:S0022481224000227:S0022481224000227_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\wp =\\wp _\\Omega $</span></span></img></span></span> the Weierstrass <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904075918471-0566:S0022481224000227:S0022481224000227_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\wp $</span></span></img></span></span>-function associated with it. Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904075918471-0566:S0022481224000227:S0022481224000227_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$D\\subseteq \\mathbb {C}$</span></span></img></span></span> be a disc and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904075918471-0566:S0022481224000227:S0022481224000227_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$I\\subseteq \\mathbb {R}$</span></span></img></span></span> be a bounded closed interval such that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904075918471-0566:S0022481224000227:S0022481224000227_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$I\\cap \\Omega =\\varnothing $</span></span></img></span></span>. Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904075918471-0566:S0022481224000227:S0022481224000227_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$f:D\\rightarrow \\mathbb {C}$</span></span></img></span></span> be a function definable in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904075918471-0566:S0022481224000227:S0022481224000227_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$(\\overline {\\mathbb {R}},\\wp |_I)$</span></span></img></span></span>. We show that if <span>f</span> is holomorphic on <span>D</span> then <span>f</span> is definable in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904075918471-0566:S0022481224000227:S0022481224000227_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$\\overline {\\mathbb {R}}$</span></span></img></span></span>. The proof of this result is an adaptation of the proof of Bianconi for the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240904075918471-0566:S0022481224000227:S0022481224000227_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {R}_{\\exp }$</span></span></img></span></span> case. We also give a characterization of lattices with complex multiplication in terms of definability and a nondefinability result for the modular <span>j</span>-function using similar methods.</p>","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Symbolic Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jsl.2024.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let $\Omega $ be a complex lattice which does not have complex multiplication and $\wp =\wp _\Omega $ the Weierstrass $\wp $-function associated with it. Let $D\subseteq \mathbb {C}$ be a disc and $I\subseteq \mathbb {R}$ be a bounded closed interval such that $I\cap \Omega =\varnothing $. Let $f:D\rightarrow \mathbb {C}$ be a function definable in $(\overline {\mathbb {R}},\wp |_I)$. We show that if f is holomorphic on D then f is definable in $\overline {\mathbb {R}}$. The proof of this result is an adaptation of the proof of Bianconi for the $\mathbb {R}_{\exp }$ case. We also give a characterization of lattices with complex multiplication in terms of definability and a nondefinability result for the modular j-function using similar methods.