Weighted sums and Berry-Esseen type estimates in free probability theory

IF 1.5 1区 数学 Q2 STATISTICS & PROBABILITY
Leonie Neufeld
{"title":"Weighted sums and Berry-Esseen type estimates in free probability theory","authors":"Leonie Neufeld","doi":"10.1007/s00440-024-01294-0","DOIUrl":null,"url":null,"abstract":"<p>We study weighted sums of free identically distributed self-adjoint random variables with weights chosen randomly from the unit sphere and show that the Kolmogorov distance between the distribution of such a weighted sum and Wigner’s semicircle law is of order <span>\\(n^{-\\frac{1}{2}}\\)</span> with high probability. Replacing the Kolmogorov distance by a weaker pseudometric, we obtain a rate of convergence of order <span>\\(n^{-1}\\)</span>, thus providing a free analog of the Klartag-Sodin result in classical probability theory. Moreover, we show that our ideas generalize to the setting of sums of free non-identically distributed bounded self-adjoint random variables leading to a new rate of convergence in the free central limit theorem.</p>","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Theory and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00440-024-01294-0","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We study weighted sums of free identically distributed self-adjoint random variables with weights chosen randomly from the unit sphere and show that the Kolmogorov distance between the distribution of such a weighted sum and Wigner’s semicircle law is of order \(n^{-\frac{1}{2}}\) with high probability. Replacing the Kolmogorov distance by a weaker pseudometric, we obtain a rate of convergence of order \(n^{-1}\), thus providing a free analog of the Klartag-Sodin result in classical probability theory. Moreover, we show that our ideas generalize to the setting of sums of free non-identically distributed bounded self-adjoint random variables leading to a new rate of convergence in the free central limit theorem.

自由概率论中的加权和与贝里-埃森类型估计
我们研究了自由同分布自相关随机变量的加权和,其权重是从单位球中随机选择的,并证明这种加权和的分布与维格纳半圆律之间的柯尔莫哥洛夫距离很有可能是 \(n^{-\frac{1}{2}}\)阶。用一个较弱的伪计量代替科尔莫哥洛夫距离,我们得到了阶(n^{-1}\)的收敛率,从而提供了经典概率论中克拉塔格-索丁结果的自由类比。此外,我们还证明了我们的想法可以推广到自由非同分布有界自交随机变量之和的环境中,从而在自由中心极限定理中得到新的收敛率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Probability Theory and Related Fields
Probability Theory and Related Fields 数学-统计学与概率论
CiteScore
3.70
自引率
5.00%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Probability Theory and Related Fields publishes research papers in modern probability theory and its various fields of application. Thus, subjects of interest include: mathematical statistical physics, mathematical statistics, mathematical biology, theoretical computer science, and applications of probability theory to other areas of mathematics such as combinatorics, analysis, ergodic theory and geometry. Survey papers on emerging areas of importance may be considered for publication. The main languages of publication are English, French and German.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信