{"title":"Weighted sums and Berry-Esseen type estimates in free probability theory","authors":"Leonie Neufeld","doi":"10.1007/s00440-024-01294-0","DOIUrl":null,"url":null,"abstract":"<p>We study weighted sums of free identically distributed self-adjoint random variables with weights chosen randomly from the unit sphere and show that the Kolmogorov distance between the distribution of such a weighted sum and Wigner’s semicircle law is of order <span>\\(n^{-\\frac{1}{2}}\\)</span> with high probability. Replacing the Kolmogorov distance by a weaker pseudometric, we obtain a rate of convergence of order <span>\\(n^{-1}\\)</span>, thus providing a free analog of the Klartag-Sodin result in classical probability theory. Moreover, we show that our ideas generalize to the setting of sums of free non-identically distributed bounded self-adjoint random variables leading to a new rate of convergence in the free central limit theorem.</p>","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Theory and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00440-024-01294-0","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
We study weighted sums of free identically distributed self-adjoint random variables with weights chosen randomly from the unit sphere and show that the Kolmogorov distance between the distribution of such a weighted sum and Wigner’s semicircle law is of order \(n^{-\frac{1}{2}}\) with high probability. Replacing the Kolmogorov distance by a weaker pseudometric, we obtain a rate of convergence of order \(n^{-1}\), thus providing a free analog of the Klartag-Sodin result in classical probability theory. Moreover, we show that our ideas generalize to the setting of sums of free non-identically distributed bounded self-adjoint random variables leading to a new rate of convergence in the free central limit theorem.
期刊介绍:
Probability Theory and Related Fields publishes research papers in modern probability theory and its various fields of application. Thus, subjects of interest include: mathematical statistical physics, mathematical statistics, mathematical biology, theoretical computer science, and applications of probability theory to other areas of mathematics such as combinatorics, analysis, ergodic theory and geometry. Survey papers on emerging areas of importance may be considered for publication. The main languages of publication are English, French and German.