{"title":"The Investigation of the Hydrodynamic Drag of a Slit Microchannel with a Textured Wall","authors":"A. S. Lobasov, A. V. Minakov","doi":"10.1134/s1063785023180104","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The results of numerical investigation of the hydrodynamic drag of a slit microchannel with a textured wall surface, as well as of the pressure drop in such a channel and the effective slip length on the wall for various Reynolds numbers, are presented. The channel height was 10 μm, and the length varied from 25 to 500 μm. It was found that the pressure drop in the textured microchannel was less than in a conventional one at any length. The dependences of the relative pressure drop, friction factor, and effective slip length on the Reynolds number were obtained for various channel lengths. A correlation that describes the dependence of the relative pressure drop on the Reynolds number for small channel lengths was proposed. The friction factor was described by a correlation expressed as 20/Re.</p>","PeriodicalId":784,"journal":{"name":"Technical Physics Letters","volume":"5 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s1063785023180104","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The results of numerical investigation of the hydrodynamic drag of a slit microchannel with a textured wall surface, as well as of the pressure drop in such a channel and the effective slip length on the wall for various Reynolds numbers, are presented. The channel height was 10 μm, and the length varied from 25 to 500 μm. It was found that the pressure drop in the textured microchannel was less than in a conventional one at any length. The dependences of the relative pressure drop, friction factor, and effective slip length on the Reynolds number were obtained for various channel lengths. A correlation that describes the dependence of the relative pressure drop on the Reynolds number for small channel lengths was proposed. The friction factor was described by a correlation expressed as 20/Re.
期刊介绍:
Technical Physics Letters is a companion journal to Technical Physics and offers rapid publication of developments in theoretical and experimental physics with potential technological applications. Recent emphasis has included many papers on gas lasers and on lasing in semiconductors, as well as many reports on high Tc superconductivity. The excellent coverage of plasma physics seen in the parent journal, Technical Physics, is also present here with quick communication of developments in theoretical and experimental work in all fields with probable technical applications. Topics covered are basic and applied physics; plasma physics; solid state physics; physical electronics; accelerators; microwave electron devices; holography.