{"title":"Sufficient Condition for Polynomial Solvability of Random 3-CNF Formulas","authors":"S. I. Uvarov","doi":"10.1134/S1064562424601148","DOIUrl":null,"url":null,"abstract":"<p>This paper is devoted to the localisation of random 3-CNF formulas that are polynomially solvable by the resolution algorithm. It is shown that random formulas with the number of clauses proportional to the square of the number of variables, are polynomially solvable with probability close to unity when the proportionality coefficient exceeds the found threshold.</p>","PeriodicalId":531,"journal":{"name":"Doklady Mathematics","volume":"110 1","pages":"323 - 327"},"PeriodicalIF":0.5000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562424601148","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is devoted to the localisation of random 3-CNF formulas that are polynomially solvable by the resolution algorithm. It is shown that random formulas with the number of clauses proportional to the square of the number of variables, are polynomially solvable with probability close to unity when the proportionality coefficient exceeds the found threshold.
期刊介绍:
Doklady Mathematics is a journal of the Presidium of the Russian Academy of Sciences. It contains English translations of papers published in Doklady Akademii Nauk (Proceedings of the Russian Academy of Sciences), which was founded in 1933 and is published 36 times a year. Doklady Mathematics includes the materials from the following areas: mathematics, mathematical physics, computer science, control theory, and computers. It publishes brief scientific reports on previously unpublished significant new research in mathematics and its applications. The main contributors to the journal are Members of the RAS, Corresponding Members of the RAS, and scientists from the former Soviet Union and other foreign countries. Among the contributors are the outstanding Russian mathematicians.