{"title":"Machine Learning Methods and Time Series: A Through Forecasting Study via Simulation and USA Inflation Analysis","authors":"Klaus Boesch, Flavio A. Ziegelmann","doi":"10.1007/s10614-024-10675-5","DOIUrl":null,"url":null,"abstract":"<p>Modern problems in Economics have tremendously benefited from the ever increasing amount of available information. Hence, most of the recent econometric approaches have focused on how to model and estimate relationships between covariates and dependent variables under this high-dimensional scenario. Particularly in the time series context, one usually aims to produce valuable forecasts of the dependent variables. In this paper our main goal is two-folded: i) employ several modern computationally highly intensive Machine Learning (ML) methods for achieving time series forecasting accuracy under a high-dimensional covariates setting; ii) propose a novel variation of the Elastic Net (ENet), the Weighted Lag Adaptive ENet (WLadaENet), which combines the popular Ridge Regression with a regularization method tailored for time series, the WLAdaLASSO (Konzen and Ziegelmann in J Forecast 35:592–612, 2016). To achieve our goal, we carry out Monte Carlo simulation studies as well as a real data analysis of USA inflation with a forecast range from January 2013 to December 2023. In our Monte Carlo implementations, the WLadaENet presents a solid performance both in terms of variable selection when the true model is sparse and in terms of forecasting accuracy even when the model is not sparse and nonlinearities are included. Our approach also performs reasonably well to forecast the USA inflation for different horizons ahead. Since the chosen period includes the Covid-19 crisis, a sub-period analysis is carried out, not leading to a uniformly best forecaster.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"6 1","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s10614-024-10675-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Modern problems in Economics have tremendously benefited from the ever increasing amount of available information. Hence, most of the recent econometric approaches have focused on how to model and estimate relationships between covariates and dependent variables under this high-dimensional scenario. Particularly in the time series context, one usually aims to produce valuable forecasts of the dependent variables. In this paper our main goal is two-folded: i) employ several modern computationally highly intensive Machine Learning (ML) methods for achieving time series forecasting accuracy under a high-dimensional covariates setting; ii) propose a novel variation of the Elastic Net (ENet), the Weighted Lag Adaptive ENet (WLadaENet), which combines the popular Ridge Regression with a regularization method tailored for time series, the WLAdaLASSO (Konzen and Ziegelmann in J Forecast 35:592–612, 2016). To achieve our goal, we carry out Monte Carlo simulation studies as well as a real data analysis of USA inflation with a forecast range from January 2013 to December 2023. In our Monte Carlo implementations, the WLadaENet presents a solid performance both in terms of variable selection when the true model is sparse and in terms of forecasting accuracy even when the model is not sparse and nonlinearities are included. Our approach also performs reasonably well to forecast the USA inflation for different horizons ahead. Since the chosen period includes the Covid-19 crisis, a sub-period analysis is carried out, not leading to a uniformly best forecaster.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.