{"title":"Friction of graphene on a substrate with a cavity defect","authors":"Peng Zhou, ZhanLei Huo, TienChong Chang","doi":"10.1007/s11431-023-2634-9","DOIUrl":null,"url":null,"abstract":"<p>The frictional behavior of supported graphene is known to be influenced by the physical properties and surface morphologies of the underlying substrate. However, it is unclear how a surface defect on the substrate affects the friction of supported graphene, and it is even unknown how to define the defect-induced friction force in this context. Here we conduct molecular dynamics (MD) simulations to investigate the friction between a square diamond slider and a graphene sheet supported by a copper substrate with a surface cavity defect. Our results demonstrate that the defect-induced friction exhibits a nonlinear increase with cavity size, while it decreases nonlinearly with slider size. We propose that the definition of defect-induced friction can be linked to the increase in friction work over the length of the slider, and is closely correlated to the defect-induced relative change in indentation depth and the ratio of the cavity area to the contact area. These findings provide a comprehensive evaluation of the impact of a substrate cavity defect on the friction of supported graphene and offer insights that may have broader implications for understanding defect-induced friction in other two-dimensional materials.</p>","PeriodicalId":21612,"journal":{"name":"Science China Technological Sciences","volume":"20 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Technological Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11431-023-2634-9","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The frictional behavior of supported graphene is known to be influenced by the physical properties and surface morphologies of the underlying substrate. However, it is unclear how a surface defect on the substrate affects the friction of supported graphene, and it is even unknown how to define the defect-induced friction force in this context. Here we conduct molecular dynamics (MD) simulations to investigate the friction between a square diamond slider and a graphene sheet supported by a copper substrate with a surface cavity defect. Our results demonstrate that the defect-induced friction exhibits a nonlinear increase with cavity size, while it decreases nonlinearly with slider size. We propose that the definition of defect-induced friction can be linked to the increase in friction work over the length of the slider, and is closely correlated to the defect-induced relative change in indentation depth and the ratio of the cavity area to the contact area. These findings provide a comprehensive evaluation of the impact of a substrate cavity defect on the friction of supported graphene and offer insights that may have broader implications for understanding defect-induced friction in other two-dimensional materials.
期刊介绍:
Science China Technological Sciences, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.
Science China Technological Sciences is published in both print and electronic forms. It is indexed by Science Citation Index.
Categories of articles:
Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested.
Research papers report on important original results in all areas of technological sciences.
Brief reports present short reports in a timely manner of the latest important results.