Arithmetizing Shape Analysis

Sebastian Wolff, Ekanshdeep Gupta, Zafer Esen, Hossein Hojjat, Philipp Rümmer, Thomas Wies
{"title":"Arithmetizing Shape Analysis","authors":"Sebastian Wolff, Ekanshdeep Gupta, Zafer Esen, Hossein Hojjat, Philipp Rümmer, Thomas Wies","doi":"arxiv-2408.09037","DOIUrl":null,"url":null,"abstract":"Memory safety is an essential correctness property of software systems. For\nprograms operating on linked heap-allocated data structures, the problem of\nproving memory safety boils down to analyzing the possible shapes of data\nstructures, leading to the field of shape analysis. This paper presents a novel\nreduction-based approach to memory safety analysis that relies on two forms of\nabstraction: flow abstraction, representing global properties of the heap graph\nthrough local flow equations; and view abstraction, which enable verification\ntools to reason symbolically about an unbounded number of heap objects. In\ncombination, the two abstractions make it possible to reduce memory-safety\nproofs to proofs about heap-less imperative programs that can be discharged\nusing off-the-shelf software verification tools without built-in support for\nheap reasoning. Using an empirical evaluation on a broad range of programs, the\npaper shows that the reduction approach can effectively verify memory safety\nfor sequential and concurrent programs operating on different kinds of linked\ndata structures, including singly-linked, doubly-linked, and nested lists as\nwell as trees.","PeriodicalId":501197,"journal":{"name":"arXiv - CS - Programming Languages","volume":"62 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.09037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Memory safety is an essential correctness property of software systems. For programs operating on linked heap-allocated data structures, the problem of proving memory safety boils down to analyzing the possible shapes of data structures, leading to the field of shape analysis. This paper presents a novel reduction-based approach to memory safety analysis that relies on two forms of abstraction: flow abstraction, representing global properties of the heap graph through local flow equations; and view abstraction, which enable verification tools to reason symbolically about an unbounded number of heap objects. In combination, the two abstractions make it possible to reduce memory-safety proofs to proofs about heap-less imperative programs that can be discharged using off-the-shelf software verification tools without built-in support for heap reasoning. Using an empirical evaluation on a broad range of programs, the paper shows that the reduction approach can effectively verify memory safety for sequential and concurrent programs operating on different kinds of linked data structures, including singly-linked, doubly-linked, and nested lists as well as trees.
形状分析的算术化
内存安全是软件系统的基本正确性属性。对于在链接堆分配的数据结构上运行的程序来说,证明内存安全性的问题可以归结为分析数据结构的可能形状,这也导致了形状分析领域的出现。本文提出了一种新颖的基于还原的内存安全分析方法,这种方法依赖于两种形式的抽象:流抽象和视图抽象,前者通过局部流方程来表示堆图的全局属性,后者则使验证工具能够对堆对象的无限数量进行符号推理。将这两种抽象结合起来,就有可能将内存安全证明简化为关于无堆命令式程序的证明,这些证明可以使用现成的软件验证工具来完成,而这些工具没有内置的堆推理支持。通过对大量程序的实证评估,论文表明这种还原方法可以有效地验证在不同类型链接数据结构(包括单链、双链和嵌套列表以及树)上运行的顺序和并发程序的内存安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信