EHL*: Memory-Budgeted Indexing for Ultrafast Optimal Euclidean Pathfinding

Jinchun Du, Bojie Shen, Muhammad Aamir Cheema
{"title":"EHL*: Memory-Budgeted Indexing for Ultrafast Optimal Euclidean Pathfinding","authors":"Jinchun Du, Bojie Shen, Muhammad Aamir Cheema","doi":"arxiv-2408.11341","DOIUrl":null,"url":null,"abstract":"The Euclidean Shortest Path Problem (ESPP), which involves finding the\nshortest path in a Euclidean plane with polygonal obstacles, is a classic\nproblem with numerous real-world applications. The current state-of-the-art\nsolution, Euclidean Hub Labeling (EHL), offers ultra-fast query performance,\noutperforming existing techniques by 1-2 orders of magnitude in runtime\nefficiency. However, this performance comes at the cost of significant memory\noverhead, requiring up to tens of gigabytes of storage on large maps, which can\nlimit its applicability in memory-constrained environments like mobile phones\nor smaller devices. Additionally, EHL's memory usage can only be determined\nafter index construction, and while it provides a memory-runtime tradeoff, it\ndoes not fully optimize memory utilization. In this work, we introduce an\nimproved version of EHL, called EHL*, which overcomes these limitations. A key\ncontribution of EHL* is its ability to create an index that adheres to a\nspecified memory budget while optimizing query runtime performance. Moreover,\nEHL* can leverage preknown query distributions, a common scenario in many\nreal-world applications to further enhance runtime efficiency. Our results show\nthat EHL* can reduce memory usage by up to 10-20 times without much impact on\nquery runtime performance compared to EHL, making it a highly effective\nsolution for optimal pathfinding in memory-constrained environments.","PeriodicalId":501123,"journal":{"name":"arXiv - CS - Databases","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.11341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Euclidean Shortest Path Problem (ESPP), which involves finding the shortest path in a Euclidean plane with polygonal obstacles, is a classic problem with numerous real-world applications. The current state-of-the-art solution, Euclidean Hub Labeling (EHL), offers ultra-fast query performance, outperforming existing techniques by 1-2 orders of magnitude in runtime efficiency. However, this performance comes at the cost of significant memory overhead, requiring up to tens of gigabytes of storage on large maps, which can limit its applicability in memory-constrained environments like mobile phones or smaller devices. Additionally, EHL's memory usage can only be determined after index construction, and while it provides a memory-runtime tradeoff, it does not fully optimize memory utilization. In this work, we introduce an improved version of EHL, called EHL*, which overcomes these limitations. A key contribution of EHL* is its ability to create an index that adheres to a specified memory budget while optimizing query runtime performance. Moreover, EHL* can leverage preknown query distributions, a common scenario in many real-world applications to further enhance runtime efficiency. Our results show that EHL* can reduce memory usage by up to 10-20 times without much impact on query runtime performance compared to EHL, making it a highly effective solution for optimal pathfinding in memory-constrained environments.
EHL*:超快最优欧氏寻路的内存预算索引
欧氏最短路径问题(ESPP)涉及在有多边形障碍物的欧氏平面上寻找最短路径,是一个经典问题,在现实世界中有大量应用。目前最先进的解决方案--欧氏集束标记(EHL)--提供了超快的查询性能,在运行效率上比现有技术高出 1-2 个数量级。然而,这种性能是以巨大的内存开销为代价的,在大型地图上需要高达数十 GB 的存储空间,这可能会限制其在内存受限环境(如手机或更小的设备)中的适用性。此外,EHL 的内存使用量只能在索引构建后才能确定,虽然它提供了内存运行时间的权衡,但并不能完全优化内存利用率。在这项工作中,我们引入了 EHL 的改进版本,称为 EHL*,它克服了这些限制。EHL* 的一个关键贡献是,它能够创建符合指定内存预算的索引,同时优化查询运行时性能。此外,EHL*还能利用已知的查询分布(这是许多现实世界应用中的常见情况)来进一步提高运行时效率。我们的研究结果表明,与 EHL 相比,EHL* 可以减少多达 10-20 倍的内存使用量,而不会对查询运行时性能产生太大影响,因此是内存受限环境中优化寻路的高效解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信