Cost-Aware Uncertainty Reduction in Schema Matching with GPT-4: The Prompt-Matcher Framework

Longyu Feng, Huahang Li, Chen Jason Zhang
{"title":"Cost-Aware Uncertainty Reduction in Schema Matching with GPT-4: The Prompt-Matcher Framework","authors":"Longyu Feng, Huahang Li, Chen Jason Zhang","doi":"arxiv-2408.14507","DOIUrl":null,"url":null,"abstract":"Schema matching is the process of identifying correspondences between the\nelements of two given schemata, essential for database management systems, data\nintegration, and data warehousing. The inherent uncertainty of current schema\nmatching algorithms leads to the generation of a set of candidate matches.\nStoring these results necessitates the use of databases and systems capable of\nhandling probabilistic queries. This complicates the querying process and\nincreases the associated storage costs. Motivated by GPT-4 outstanding\nperformance, we explore its potential to reduce uncertainty. Our proposal is to\nsupplant the role of crowdworkers with GPT-4 for querying the set of candidate\nmatches. To get more precise correspondence verification responses from GPT-4,\nWe have crafted Semantic-match and Abbreviation-match prompt for GPT-4,\nachieving state-of-the-art results on two benchmark datasets DeepMDatasets 100%\n(+0.0) and Fabricated-Datasets 91.8% (+2.2) recall rate. To optimise budget\nutilisation, we have devised a cost-aware solution. Within the constraints of\nthe budget, our solution delivers favourable outcomes with minimal time\nexpenditure. We introduce a novel framework, Prompt-Matcher, to reduce the uncertainty in\nthe process of integration of multiple automatic schema matching algorithms and\nthe selection of complex parameterization. It assists users in diminishing the\nuncertainty associated with candidate schema match results and in optimally\nranking the most promising matches. We formally define the Correspondence\nSelection Problem, aiming to optimise the revenue within the confines of the\nGPT-4 budget. We demonstrate that CSP is NP-Hard and propose an approximation\nalgorithm with minimal time expenditure. Ultimately, we demonstrate the\nefficacy of Prompt-Matcher through rigorous experiments.","PeriodicalId":501123,"journal":{"name":"arXiv - CS - Databases","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Schema matching is the process of identifying correspondences between the elements of two given schemata, essential for database management systems, data integration, and data warehousing. The inherent uncertainty of current schema matching algorithms leads to the generation of a set of candidate matches. Storing these results necessitates the use of databases and systems capable of handling probabilistic queries. This complicates the querying process and increases the associated storage costs. Motivated by GPT-4 outstanding performance, we explore its potential to reduce uncertainty. Our proposal is to supplant the role of crowdworkers with GPT-4 for querying the set of candidate matches. To get more precise correspondence verification responses from GPT-4, We have crafted Semantic-match and Abbreviation-match prompt for GPT-4, achieving state-of-the-art results on two benchmark datasets DeepMDatasets 100% (+0.0) and Fabricated-Datasets 91.8% (+2.2) recall rate. To optimise budget utilisation, we have devised a cost-aware solution. Within the constraints of the budget, our solution delivers favourable outcomes with minimal time expenditure. We introduce a novel framework, Prompt-Matcher, to reduce the uncertainty in the process of integration of multiple automatic schema matching algorithms and the selection of complex parameterization. It assists users in diminishing the uncertainty associated with candidate schema match results and in optimally ranking the most promising matches. We formally define the Correspondence Selection Problem, aiming to optimise the revenue within the confines of the GPT-4 budget. We demonstrate that CSP is NP-Hard and propose an approximation algorithm with minimal time expenditure. Ultimately, we demonstrate the efficacy of Prompt-Matcher through rigorous experiments.
利用 GPT-4 降低模式匹配中的不确定性:提示-匹配器框架
模式匹配是识别两个给定模式的元素之间对应关系的过程,对于数据库管理系统、数据整合和数据仓库至关重要。当前模式匹配算法固有的不确定性会导致生成一组候选匹配结果,要存储这些结果,就必须使用能够处理概率查询的数据库和系统。这使得查询过程变得复杂,并增加了相关的存储成本。在 GPT-4 卓越性能的激励下,我们探索了其减少不确定性的潜力。我们的建议是用 GPT-4 来替代人群工作者的角色,以查询候选匹配集。为了从 GPT-4 中获得更精确的对应验证响应,我们为 GPT-4 设计了语义匹配(Semantic-match)和缩写匹配(Abbreviation-match)提示,在两个基准数据集 DeepMDatasets 100%(+0.0)和 Fabricated-Datasets 91.8%(+2.2)召回率上取得了最先进的结果。为了优化预算利用,我们设计了一种成本感知解决方案。在预算有限的情况下,我们的解决方案能以最少的时间支出获得最佳结果。我们引入了一个新颖的框架--Prompt-Matcher,以减少整合多种自动模式匹配算法和选择复杂参数化过程中的不确定性。它可以帮助用户减少与候选模式匹配结果相关的不确定性,并对最有希望的匹配结果进行优化排序。我们正式定义了 "对应选择问题"(CorrespondenceSelection Problem),目的是在 GPT-4 预算范围内优化收益。我们证明了 CSP 的 NP 难度,并提出了一种耗时最少的近似计算方法。最后,我们通过严格的实验证明了 Prompt-Matcher 的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信