Extension of the subgradient extragradient algorithm for solving variational inequalities without monotonicity

IF 2.4 3区 数学 Q1 MATHEMATICS
Jiaxin Chen, Zunjie Huang, Yongle Zhang
{"title":"Extension of the subgradient extragradient algorithm for solving variational inequalities without monotonicity","authors":"Jiaxin Chen, Zunjie Huang, Yongle Zhang","doi":"10.1007/s12190-024-02219-9","DOIUrl":null,"url":null,"abstract":"<p>Two improved subgradient extragradient algorithms are proposed for solving nonmonotone variational inequalities under the nonempty assumption of the solution set of the dual variational inequalities. First, when the mapping is Lipschitz continuous, we propose an improved subgradient extragradient algorithm with self-adaptive step-size (ISEGS for short). In ISEGS, the next iteration point is obtained by projecting sequentially the current iteration point onto two different half-spaces, and only one projection onto the feasible set is required in the process of constructing the half-spaces per iteration. The self-adaptive technique allows us to determine the step-size without using the Lipschitz constant. Second, we extend our algorithm into the case where the mapping is merely continuous. The Armijo line search approach is used to handle the non-Lipschitz continuity of the mapping. The global convergence of both algorithms is established without monotonicity assumption of the mapping. The computational complexity of the two proposed algorithms is analyzed. Some numerical examples are given to show the efficiency of the new algorithms.\n</p>","PeriodicalId":15034,"journal":{"name":"Journal of Applied Mathematics and Computing","volume":"18 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12190-024-02219-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Two improved subgradient extragradient algorithms are proposed for solving nonmonotone variational inequalities under the nonempty assumption of the solution set of the dual variational inequalities. First, when the mapping is Lipschitz continuous, we propose an improved subgradient extragradient algorithm with self-adaptive step-size (ISEGS for short). In ISEGS, the next iteration point is obtained by projecting sequentially the current iteration point onto two different half-spaces, and only one projection onto the feasible set is required in the process of constructing the half-spaces per iteration. The self-adaptive technique allows us to determine the step-size without using the Lipschitz constant. Second, we extend our algorithm into the case where the mapping is merely continuous. The Armijo line search approach is used to handle the non-Lipschitz continuity of the mapping. The global convergence of both algorithms is established without monotonicity assumption of the mapping. The computational complexity of the two proposed algorithms is analyzed. Some numerical examples are given to show the efficiency of the new algorithms.

Abstract Image

子梯度外梯度算法的扩展,用于求解无单调性的变分不等式
本文提出了两种改进的子梯度外梯度算法,用于在对偶变分不等式解集非空假设下求解非单调变分不等式。首先,当映射为 Lipschitz 连续时,我们提出了一种具有自适应步长的改进子梯度外算法(简称 ISEGS)。在 ISEGS 中,下一个迭代点是通过将当前迭代点依次投影到两个不同的半空间上得到的,而在每次迭代构建半空间的过程中,只需要将一个投影投影到可行集上。自适应技术使我们无需使用 Lipschitz 常量即可确定步长。其次,我们将算法扩展到映射仅仅是连续的情况。我们使用 Armijo 线搜索方法来处理映射的非 Lipschitz 连续性。这两种算法的全局收敛性都是在没有映射单调性假设的情况下建立的。分析了两种算法的计算复杂性。还给出了一些数值示例来说明新算法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Mathematics and Computing
Journal of Applied Mathematics and Computing Mathematics-Computational Mathematics
CiteScore
4.20
自引率
4.50%
发文量
131
期刊介绍: JAMC is a broad based journal covering all branches of computational or applied mathematics with special encouragement to researchers in theoretical computer science and mathematical computing. Major areas, such as numerical analysis, discrete optimization, linear and nonlinear programming, theory of computation, control theory, theory of algorithms, computational logic, applied combinatorics, coding theory, cryptograhics, fuzzy theory with applications, differential equations with applications are all included. A large variety of scientific problems also necessarily involve Algebra, Analysis, Geometry, Probability and Statistics and so on. The journal welcomes research papers in all branches of mathematics which have some bearing on the application to scientific problems, including papers in the areas of Actuarial Science, Mathematical Biology, Mathematical Economics and Finance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信