Stationary thermal front in the problem of reconstructing the semiconductor thermal conductivity coefficient using simulation data

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
M. A. Davydova, G. D. Rublev
{"title":"Stationary thermal front in the problem of reconstructing the semiconductor thermal conductivity coefficient using simulation data","authors":"M. A. Davydova,&nbsp;G. D. Rublev","doi":"10.1134/S0040577924080026","DOIUrl":null,"url":null,"abstract":"<p> We study the problem of the existence of stationary, asymptotically Lyapunov-stable solutions with internal transition layers in nonlinear heat conductance problems with a thermal flow containing a negative exponent. We formulate sufficient conditions for the existence of classical solutions with internal layers in such problems. We construct an asymptotic approximation of an arbitrary-order for the solution with a transition layer. We substantiate the algorithm for constructing the formal asymptotics and study the asymptotic Lyapunov stability of the stationary solution with an internal layer as a solution of the corresponding parabolic problem with the description of the local attraction domain of the stable stationary solution. As an application, we present a new effective method for reconstructing the nonlinear thermal conductivity coefficient with a negative exponent using the position of the stationary thermal front in combination with observation data. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577924080026","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We study the problem of the existence of stationary, asymptotically Lyapunov-stable solutions with internal transition layers in nonlinear heat conductance problems with a thermal flow containing a negative exponent. We formulate sufficient conditions for the existence of classical solutions with internal layers in such problems. We construct an asymptotic approximation of an arbitrary-order for the solution with a transition layer. We substantiate the algorithm for constructing the formal asymptotics and study the asymptotic Lyapunov stability of the stationary solution with an internal layer as a solution of the corresponding parabolic problem with the description of the local attraction domain of the stable stationary solution. As an application, we present a new effective method for reconstructing the nonlinear thermal conductivity coefficient with a negative exponent using the position of the stationary thermal front in combination with observation data.

Abstract Image

利用模拟数据重建半导体导热系数问题中的静态热前沿
摘要 我们研究了在含有负指数热流的非线性导热问题中,是否存在具有内部过渡层的渐近 Lyapunov 稳定的静止解的问题。我们提出了在此类问题中存在带有内部过渡层的经典解的充分条件。我们为带有过渡层的解构建了一个任意阶的渐近近似。我们证实了构建形式渐近的算法,并研究了带有内部层的静止解作为相应抛物线问题解的渐近 Lyapunov 稳定性,以及稳定静止解的局部吸引域描述。作为应用,我们提出了一种新的有效方法,利用静止热前沿的位置结合观测数据重建负指数的非线性导热系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信