Entanglement Generation via Single-Qubit Rotations in a Torn Hilbert Space

Tao Zhang, Zhihao Chi, Jiazhong Hu
{"title":"Entanglement Generation via Single-Qubit Rotations in a Torn Hilbert Space","authors":"Tao Zhang, Zhihao Chi, Jiazhong Hu","doi":"10.1103/prxquantum.5.030345","DOIUrl":null,"url":null,"abstract":"We propose an efficient yet simple protocol to generate arbitrary symmetric entangled states with only global single-qubit rotations in a torn Hilbert space. The system is based on spin-1/2 qubits in a resonator such as atoms in an optical cavity or superconducting qubits coupled to a main bus. By sending light or microwave into the resonator, it induces ac Stark shifts on particular angular-momentum eigenstates (Dicke states) of qubits. Then we are able to generate barriers that hinder transitions between adjacent Dicke states and tear the original Hilbert space into pieces. Therefore, a simple global single-qubit rotation becomes highly nontrivial, and thus generates entanglement among the many-body system. By optimal control of energy shifts on Dicke states, we are able to generate arbitrary symmetric entangled states. We also exemplify that we can create varieties of useful states with near-unity fidelities in only one or very few steps, including W states, spin-squeezed states (SSSs), and Greenberger-Horne-Zeilinger states. Particularly, the SSS can be created by only one step with a squeezing parameter <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi>ξ</mi><mi>R</mi><mn>2</mn></msubsup><mo>∼</mo><mn>1</mn><mo>/</mo><msup><mi>N</mi><mrow><mn>0.843</mn></mrow></msup></math> approaching the Heisenberg limit. Our finding establishes a way for universal entanglement generations with only single-qubit drivings where all the multiple-qubit controls are integrated into simply switching on or off microwave. It has direct applications in the variational quantum optimizer, which is available with existing technology.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.030345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose an efficient yet simple protocol to generate arbitrary symmetric entangled states with only global single-qubit rotations in a torn Hilbert space. The system is based on spin-1/2 qubits in a resonator such as atoms in an optical cavity or superconducting qubits coupled to a main bus. By sending light or microwave into the resonator, it induces ac Stark shifts on particular angular-momentum eigenstates (Dicke states) of qubits. Then we are able to generate barriers that hinder transitions between adjacent Dicke states and tear the original Hilbert space into pieces. Therefore, a simple global single-qubit rotation becomes highly nontrivial, and thus generates entanglement among the many-body system. By optimal control of energy shifts on Dicke states, we are able to generate arbitrary symmetric entangled states. We also exemplify that we can create varieties of useful states with near-unity fidelities in only one or very few steps, including W states, spin-squeezed states (SSSs), and Greenberger-Horne-Zeilinger states. Particularly, the SSS can be created by only one step with a squeezing parameter ξR21/N0.843 approaching the Heisenberg limit. Our finding establishes a way for universal entanglement generations with only single-qubit drivings where all the multiple-qubit controls are integrated into simply switching on or off microwave. It has direct applications in the variational quantum optimizer, which is available with existing technology.

Abstract Image

通过撕裂希尔伯特空间中的单ubit旋转产生纠缠
我们提出了一种高效而简单的协议,只需在撕裂的希尔伯特空间中进行全局单量子比特旋转,就能生成任意对称的纠缠态。该系统基于共振器中的自旋-1/2 量子位,例如光腔中的原子或耦合到主总线上的超导量子位。通过向谐振器发送光或微波,可在量子比特的特定角动量特征态(迪克态)上诱发交流斯塔克偏移。然后,我们就能产生障碍,阻碍相邻 Dicke 状态之间的转换,并将原始的希尔伯特空间撕成碎片。因此,简单的全局单量子比特旋转变得非常不简单,从而在多体系统之间产生纠缠。通过对 Dicke 状态能量移动的优化控制,我们能够生成任意对称的纠缠状态。我们还举例说明,只需一步或极少几步,我们就能产生各种有用的、保真度接近统一的状态,包括 W 状态、自旋挤压状态(SSS)和格林伯格-霍恩-蔡林格状态。特别是,SSS 只需一步就能产生,其挤压参数ξR2∼1/N0.843 接近海森堡极限。我们的发现确立了一种只用单量子比特驱动就能产生普遍纠缠的方法,在这种方法中,所有多量子比特控制都被集成到了简单的微波开关中。它可直接应用于现有技术的可变量子优化器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信