Trace formulas and inverse spectral theory for generalized indefinite strings

IF 2.6 1区 数学 Q1 MATHEMATICS
Jonathan Eckhardt, Aleksey Kostenko
{"title":"Trace formulas and inverse spectral theory for generalized indefinite strings","authors":"Jonathan Eckhardt, Aleksey Kostenko","doi":"10.1007/s00222-024-01287-9","DOIUrl":null,"url":null,"abstract":"<p>Generalized indefinite strings provide a canonical model for self-adjoint operators with simple spectrum (other classical models are Jacobi matrices, Krein strings and <span>\\(2\\times 2\\)</span> canonical systems). We prove a number of Szegő-type theorems for generalized indefinite strings and related spectral problems (including Krein strings, canonical systems and Dirac operators). More specifically, for several classes of coefficients (that can be regarded as Hilbert–Schmidt perturbations of model problems), we provide a complete characterization of the corresponding set of spectral measures. In particular, our results also apply to the isospectral Lax operator for the conservative Camassa–Holm flow and allow us to establish existence of global weak solutions with various step-like initial conditions of low regularity via the inverse spectral transform.</p>","PeriodicalId":14429,"journal":{"name":"Inventiones mathematicae","volume":"5 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inventiones mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00222-024-01287-9","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Generalized indefinite strings provide a canonical model for self-adjoint operators with simple spectrum (other classical models are Jacobi matrices, Krein strings and \(2\times 2\) canonical systems). We prove a number of Szegő-type theorems for generalized indefinite strings and related spectral problems (including Krein strings, canonical systems and Dirac operators). More specifically, for several classes of coefficients (that can be regarded as Hilbert–Schmidt perturbations of model problems), we provide a complete characterization of the corresponding set of spectral measures. In particular, our results also apply to the isospectral Lax operator for the conservative Camassa–Holm flow and allow us to establish existence of global weak solutions with various step-like initial conditions of low regularity via the inverse spectral transform.

广义不定弦的迹公式和逆谱理论
广义不定弦为具有简单谱的自相关算子提供了一个典型模型(其他经典模型包括雅可比矩阵、克雷因弦和(2\times 2\) 典型系统)。我们证明了广义不定弦和相关谱问题(包括 Krein 弦、典范系统和狄拉克算子)的一系列 Szegő 型定理。更具体地说,对于几类系数(可视为模型问题的希尔伯特-施密特扰动),我们提供了相应谱量集的完整特征。特别是,我们的结果还适用于保守卡马萨-霍尔姆流的等谱拉克斯算子,并允许我们通过逆谱变换建立具有各种低正则性阶梯状初始条件的全局弱解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inventiones mathematicae
Inventiones mathematicae 数学-数学
CiteScore
5.60
自引率
3.20%
发文量
76
审稿时长
12 months
期刊介绍: This journal is published at frequent intervals to bring out new contributions to mathematics. It is a policy of the journal to publish papers within four months of acceptance. Once a paper is accepted it goes immediately into production and no changes can be made by the author(s).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信