Power Is Knowledge: Distributed and Throughput Optimal Power Control in Wireless Networks

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Ilai Bistritz;Nicholas Bambos
{"title":"Power Is Knowledge: Distributed and Throughput Optimal Power Control in Wireless Networks","authors":"Ilai Bistritz;Nicholas Bambos","doi":"10.1109/TNET.2024.3444602","DOIUrl":null,"url":null,"abstract":"Consider N devices that transmit packets for T time slots, where device n uses transmission power \n<inline-formula> <tex-math>$P_{n}\\left ({{t}}\\right)$ </tex-math></inline-formula>\n at time slot t. Independently at each time slot, a packet arrives at device n with probability \n<inline-formula> <tex-math>$\\lambda _{n}$ </tex-math></inline-formula>\n. The probability of successfully transmitting a packet \n<inline-formula> <tex-math>$\\mu _{n}\\left ({{\\boldsymbol {P}}}\\right)$ </tex-math></inline-formula>\n is a function of the transmission powers of all devices \n<inline-formula> <tex-math>$\\boldsymbol {P}$ </tex-math></inline-formula>\n and the channel gains \n<inline-formula> <tex-math>$\\left \\{{{ g_{m,n}}}\\right \\} $ </tex-math></inline-formula>\n between them. This function is unknown to the devices that only observe binary reward \n<inline-formula> <tex-math>$r_{n}\\left ({{\\boldsymbol {P}}}\\right)$ </tex-math></inline-formula>\n of whether the transmission was successful (ACK/NACK). All packets of device n that were not successfully transmitted yet at time slot t wait in a queue \n<inline-formula> <tex-math>$Q_{n}\\left ({{t}}\\right)$ </tex-math></inline-formula>\n. The centralized max-weight scheduling (MWS) can stabilize the queues for any feasible \n<inline-formula> <tex-math>$\\boldsymbol {\\lambda }$ </tex-math></inline-formula>\n (i.e., throughput optimality). However, MWS for power control is intractable even as a centralized algorithm, let alone in a distributed network. We design a distributed yet asymptotically throughput optimal power control for the wireless interference channel, which has long been recognized as a major challenge. Our main observation is that the interference \n<inline-formula> <tex-math>$I_{n}\\left ({{t}}\\right)=\\sum g_{m,n}^{2}P_{m}\\left ({{t}}\\right)$ </tex-math></inline-formula>\n can be leveraged to evaluate the weighted throughput if we add a short pilot signal with power \n<inline-formula> <tex-math>$P_{m}\\propto Q_{m}\\left ({{t}}\\right)r_{m}\\left ({{\\boldsymbol {P}}}\\right)$ </tex-math></inline-formula>\n after transmitting the data. Our algorithm requires no explicit communication between the devices and learns to approximate MWS, overcoming its intractable optimization and the unknown throughput functions. We prove that, for large T, our algorithm can achieve any feasible \n<inline-formula> <tex-math>$\\boldsymbol {\\lambda }$ </tex-math></inline-formula>\n. Numerical experiments show that our algorithm outperforms the state-of-the-art distributed power control, exhibiting better performance than our theoretical bounds.","PeriodicalId":13443,"journal":{"name":"IEEE/ACM Transactions on Networking","volume":"32 6","pages":"4722-4734"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10659074/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Consider N devices that transmit packets for T time slots, where device n uses transmission power $P_{n}\left ({{t}}\right)$ at time slot t. Independently at each time slot, a packet arrives at device n with probability $\lambda _{n}$ . The probability of successfully transmitting a packet $\mu _{n}\left ({{\boldsymbol {P}}}\right)$ is a function of the transmission powers of all devices $\boldsymbol {P}$ and the channel gains $\left \{{{ g_{m,n}}}\right \} $ between them. This function is unknown to the devices that only observe binary reward $r_{n}\left ({{\boldsymbol {P}}}\right)$ of whether the transmission was successful (ACK/NACK). All packets of device n that were not successfully transmitted yet at time slot t wait in a queue $Q_{n}\left ({{t}}\right)$ . The centralized max-weight scheduling (MWS) can stabilize the queues for any feasible $\boldsymbol {\lambda }$ (i.e., throughput optimality). However, MWS for power control is intractable even as a centralized algorithm, let alone in a distributed network. We design a distributed yet asymptotically throughput optimal power control for the wireless interference channel, which has long been recognized as a major challenge. Our main observation is that the interference $I_{n}\left ({{t}}\right)=\sum g_{m,n}^{2}P_{m}\left ({{t}}\right)$ can be leveraged to evaluate the weighted throughput if we add a short pilot signal with power $P_{m}\propto Q_{m}\left ({{t}}\right)r_{m}\left ({{\boldsymbol {P}}}\right)$ after transmitting the data. Our algorithm requires no explicit communication between the devices and learns to approximate MWS, overcoming its intractable optimization and the unknown throughput functions. We prove that, for large T, our algorithm can achieve any feasible $\boldsymbol {\lambda }$ . Numerical experiments show that our algorithm outperforms the state-of-the-art distributed power control, exhibiting better performance than our theoretical bounds.
权力即知识:无线网络中的分布式和吞吐量优化功率控制
假设N台设备在T个时隙中传输数据包,其中设备N在时隙T使用的传输功率为$P_{n}\left ({{t}}\right)$。在每个时隙中,独立地有一个数据包以$\lambda _{n}$的概率到达设备N。成功传输数据包的概率$\mu _{n}\left ({{\boldsymbol {P}}}\right)$是所有设备的传输功率$\boldsymbol {P}$和它们之间的信道增益$\left \{{{ g_{m,n}}}\right \} $的函数。对于只观察传输是否成功(ACK/NACK)的二进制奖励$r_{n}\left ({{\boldsymbol {P}}}\right)$的设备来说,这个函数是未知的。所有设备n在时间槽t未成功传输的数据包都在队列$Q_{n}\left ({{t}}\right)$中等待。集中式最大权重调度(MWS)可以为任何可行的$\boldsymbol {\lambda }$(即吞吐量最优性)稳定队列。然而,即使作为集中式算法,MWS用于功率控制也是难以解决的,更不用说在分布式网络中了。我们设计了一种分布式且渐近吞吐量的无线干扰信道最优功率控制,这一直被认为是一个重大挑战。我们的主要观察是,如果我们在传输数据后添加功率为$P_{m}\propto Q_{m}\left ({{t}}\right)r_{m}\left ({{\boldsymbol {P}}}\right)$的短导频信号,则可以利用干扰$I_{n}\left ({{t}}\right)=\sum g_{m,n}^{2}P_{m}\left ({{t}}\right)$来评估加权吞吐量。我们的算法不需要设备之间的显式通信,并学习近似MWS,克服了其难以优化和未知的吞吐量函数。我们证明,对于大T,我们的算法可以实现任何可行$\boldsymbol {\lambda }$。数值实验表明,该算法优于目前最先进的分布式功率控制,性能优于我们的理论界限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE/ACM Transactions on Networking
IEEE/ACM Transactions on Networking 工程技术-电信学
CiteScore
8.20
自引率
5.40%
发文量
246
审稿时长
4-8 weeks
期刊介绍: The IEEE/ACM Transactions on Networking’s high-level objective is to publish high-quality, original research results derived from theoretical or experimental exploration of the area of communication/computer networking, covering all sorts of information transport networks over all sorts of physical layer technologies, both wireline (all kinds of guided media: e.g., copper, optical) and wireless (e.g., radio-frequency, acoustic (e.g., underwater), infra-red), or hybrids of these. The journal welcomes applied contributions reporting on novel experiences and experiments with actual systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信