Energy and Time Trade-Off Optimization for Multi-UAV Enabled Data Collection of IoT Devices

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Riheng Jia;Qiyong Fu;Zhonglong Zheng;Guanglin Zhang;Minglu Li
{"title":"Energy and Time Trade-Off Optimization for Multi-UAV Enabled Data Collection of IoT Devices","authors":"Riheng Jia;Qiyong Fu;Zhonglong Zheng;Guanglin Zhang;Minglu Li","doi":"10.1109/TNET.2024.3450489","DOIUrl":null,"url":null,"abstract":"In this work, we study the problem of dispatching multiple unmanned aerial vehicles (UAVs) for data collection in internet of things (IoT), where each UAV departs from its start point, visits some IoT devices for data collection and returns to its destination point. Considering the UAV’s limited onboard energy and the time required to collect data from all IoT devices, it is essential to appropriately assign the data collection task for each UAV, such that none of the dispatched UAVs consumes excessive energy and the maximum task completion time among all UAVs is minimized. To optimize those two conflicting objectives, we focus on minimizing the maximum task completion time and the maximum energy consumption among all UAVs, by jointly designing the flight trajectory, hovering positions for data collection and flight speed of each UAV. We formulate this problem as a multi-objective optimization problem with the aim of obtaining a set of Pareto-optimal solutions in terms of time or energy dominance. Due to the NP-hardness and complexity of the formulated problem, we propose a multi-strategy multi-objective ant colony optimization algorithm (MSMOACO), which is developed based on a constrained ant colony optimization algorithm with a fitnessguided mutation strategy and an adaptive hovering strategy being delicately incorporated, to solve the problem. To accommodate the practical scenario, we also design a novel geometry-based collision avoidance strategy to reduce the possibility of collisions among UAVs. Extensive evaluations validate the effectiveness and superiority of the proposed MSMOACO, compared with previous approaches.","PeriodicalId":13443,"journal":{"name":"IEEE/ACM Transactions on Networking","volume":"32 6","pages":"5172-5187"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10663288/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we study the problem of dispatching multiple unmanned aerial vehicles (UAVs) for data collection in internet of things (IoT), where each UAV departs from its start point, visits some IoT devices for data collection and returns to its destination point. Considering the UAV’s limited onboard energy and the time required to collect data from all IoT devices, it is essential to appropriately assign the data collection task for each UAV, such that none of the dispatched UAVs consumes excessive energy and the maximum task completion time among all UAVs is minimized. To optimize those two conflicting objectives, we focus on minimizing the maximum task completion time and the maximum energy consumption among all UAVs, by jointly designing the flight trajectory, hovering positions for data collection and flight speed of each UAV. We formulate this problem as a multi-objective optimization problem with the aim of obtaining a set of Pareto-optimal solutions in terms of time or energy dominance. Due to the NP-hardness and complexity of the formulated problem, we propose a multi-strategy multi-objective ant colony optimization algorithm (MSMOACO), which is developed based on a constrained ant colony optimization algorithm with a fitnessguided mutation strategy and an adaptive hovering strategy being delicately incorporated, to solve the problem. To accommodate the practical scenario, we also design a novel geometry-based collision avoidance strategy to reduce the possibility of collisions among UAVs. Extensive evaluations validate the effectiveness and superiority of the proposed MSMOACO, compared with previous approaches.
多无人机物联网设备数据采集的能源和时间权衡优化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE/ACM Transactions on Networking
IEEE/ACM Transactions on Networking 工程技术-电信学
CiteScore
8.20
自引率
5.40%
发文量
246
审稿时长
4-8 weeks
期刊介绍: The IEEE/ACM Transactions on Networking’s high-level objective is to publish high-quality, original research results derived from theoretical or experimental exploration of the area of communication/computer networking, covering all sorts of information transport networks over all sorts of physical layer technologies, both wireline (all kinds of guided media: e.g., copper, optical) and wireless (e.g., radio-frequency, acoustic (e.g., underwater), infra-red), or hybrids of these. The journal welcomes applied contributions reporting on novel experiences and experiments with actual systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信