Zhengyu Liao;Shiyou Qian;Zhonglong Zheng;Jiange Zhang;Jian Cao;Guangtao Xue;Minglu Li
{"title":"DBTable: Leveraging Discriminative Bitsets for High-Performance Packet Classification","authors":"Zhengyu Liao;Shiyou Qian;Zhonglong Zheng;Jiange Zhang;Jian Cao;Guangtao Xue;Minglu Li","doi":"10.1109/TNET.2024.3452780","DOIUrl":null,"url":null,"abstract":"Packet classification, as a crucial function of networks, has been extensively investigated. In recent years, the rapid advancement of software-defined networking (SDN) has introduced new demands for packet classification, particularly in supporting dynamic rule updates and fast lookup. This paper presents a novel structure called DBTable for efficient packet classification to achieve high overall performance. DBTable integrates the strengths of conventional packet classification methods and neural network concepts. Within DBTable, a straightforward indexing scheme is proposed to eliminate rule replication, thereby ensuring high update performance. Additionally, we propose an iterative method for generating a discriminative bitset (DBS) to evenly partition rules. By utilizing the DBS, rules can be efficiently mapped in a hash table, thus achieving exceptional lookup performance. Moreover, DBTable incorporates a hybrid structure to further optimize the worst-case lookup performance, primarily caused by data skewness. The experiment results on 12 256k rulesets show that, compared to seven state-of-the-art schemes, DBTable achieves an overall lookup speed improvement ranging from 1.53x to 7.29x, while maintaining the fastest update speed.","PeriodicalId":13443,"journal":{"name":"IEEE/ACM Transactions on Networking","volume":"32 6","pages":"5232-5246"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10670313/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Packet classification, as a crucial function of networks, has been extensively investigated. In recent years, the rapid advancement of software-defined networking (SDN) has introduced new demands for packet classification, particularly in supporting dynamic rule updates and fast lookup. This paper presents a novel structure called DBTable for efficient packet classification to achieve high overall performance. DBTable integrates the strengths of conventional packet classification methods and neural network concepts. Within DBTable, a straightforward indexing scheme is proposed to eliminate rule replication, thereby ensuring high update performance. Additionally, we propose an iterative method for generating a discriminative bitset (DBS) to evenly partition rules. By utilizing the DBS, rules can be efficiently mapped in a hash table, thus achieving exceptional lookup performance. Moreover, DBTable incorporates a hybrid structure to further optimize the worst-case lookup performance, primarily caused by data skewness. The experiment results on 12 256k rulesets show that, compared to seven state-of-the-art schemes, DBTable achieves an overall lookup speed improvement ranging from 1.53x to 7.29x, while maintaining the fastest update speed.
期刊介绍:
The IEEE/ACM Transactions on Networking’s high-level objective is to publish high-quality, original research results derived from theoretical or experimental exploration of the area of communication/computer networking, covering all sorts of information transport networks over all sorts of physical layer technologies, both wireline (all kinds of guided media: e.g., copper, optical) and wireless (e.g., radio-frequency, acoustic (e.g., underwater), infra-red), or hybrids of these. The journal welcomes applied contributions reporting on novel experiences and experiments with actual systems.