{"title":"Stopping Rule Sampling to Monitor and Protect Endangered Species","authors":"Lara Mitchell, Leo Polansky, Ken B. Newman","doi":"10.1007/s13253-024-00649-3","DOIUrl":null,"url":null,"abstract":"<p>Ecological science and management often require animal population abundance estimates to determine population status, set harvest limits on exploited populations, assess biodiversity, and evaluate the effects of management actions. However, sampling can harm animal populations. Motivated by trawl sampling of an endangered fish, we present a sequential adaptive sampling design focused on making population-level inferences while limiting harm to the target population. The design incorporates stopping rules such that multiple samples are collected at a site until one or more individuals from the target population are captured, conditional on the number of samples falling within a predetermined range. With this application in mind, we pair the stopping rules sampling design with a density model from which to base abundance indices. We use theoretical analyses and simulations to evaluate inference of population parameters and reduction in catch under the stopping rule sampling design compared to fixed sampling designs. Density point estimates based on stopping rules could theoretically be biased high, but simulations indicated that the stopping rules did not induce noticeable bias in practice. Retrospective analysis of the case study indicated that the stopping rules reduced catch by 60% compared to a fixed sampling design with maximum possible effort.Supplementary materials accompanying this paper appear online.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13253-024-00649-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ecological science and management often require animal population abundance estimates to determine population status, set harvest limits on exploited populations, assess biodiversity, and evaluate the effects of management actions. However, sampling can harm animal populations. Motivated by trawl sampling of an endangered fish, we present a sequential adaptive sampling design focused on making population-level inferences while limiting harm to the target population. The design incorporates stopping rules such that multiple samples are collected at a site until one or more individuals from the target population are captured, conditional on the number of samples falling within a predetermined range. With this application in mind, we pair the stopping rules sampling design with a density model from which to base abundance indices. We use theoretical analyses and simulations to evaluate inference of population parameters and reduction in catch under the stopping rule sampling design compared to fixed sampling designs. Density point estimates based on stopping rules could theoretically be biased high, but simulations indicated that the stopping rules did not induce noticeable bias in practice. Retrospective analysis of the case study indicated that the stopping rules reduced catch by 60% compared to a fixed sampling design with maximum possible effort.Supplementary materials accompanying this paper appear online.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.