Typical Dropping Asymptotics in the Semiclassical Approximations to Solutions of the Nonlinear Schrödinger Equation

Pub Date : 2024-09-11 DOI:10.1134/s0012266124050045
S. N. Melikhov, B. I. Suleimanov, A. M. Shavlukov
{"title":"Typical Dropping Asymptotics in the Semiclassical Approximations to Solutions of the Nonlinear Schrödinger Equation","authors":"S. N. Melikhov, B. I. Suleimanov, A. M. Shavlukov","doi":"10.1134/s0012266124050045","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> Formal asymptotics are substantiated that describe a typical dropping cusp singularity in\nthe semiclassical approximations to solutions of two cases of the integrable nonlinear\nSchrödinger equation <span>\\(-i\\varepsilon \\Psi ^{\\prime }_{t} = \\varepsilon ^2\\Psi ^{\\prime \\prime }_{xx}\\pm 2|\\Psi | ^2\\Psi \\)</span>,\nwhere <span>\\(\\varepsilon \\)</span> is a small parameter. The substantiation uses the\nideas and facts of the mathematical catastrophe theory and the part of Yu.F. Korobeinik’s\ntheorem concerning analytical, as <span>\\(h\\to 0\\)</span>, solutions\n<span>\\(G(h,u) \\)</span> of the mixed type linear equation\n<span>\\(hG^{\\prime \\prime }_{hh}=G^{\\prime \\prime }_{uu}\\)</span> to\nwhich the hodograph images of both cases of the systems of equations of these semiclassical\napproximations are equivalent.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0012266124050045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Formal asymptotics are substantiated that describe a typical dropping cusp singularity in the semiclassical approximations to solutions of two cases of the integrable nonlinear Schrödinger equation \(-i\varepsilon \Psi ^{\prime }_{t} = \varepsilon ^2\Psi ^{\prime \prime }_{xx}\pm 2|\Psi | ^2\Psi \), where \(\varepsilon \) is a small parameter. The substantiation uses the ideas and facts of the mathematical catastrophe theory and the part of Yu.F. Korobeinik’s theorem concerning analytical, as \(h\to 0\), solutions \(G(h,u) \) of the mixed type linear equation \(hG^{\prime \prime }_{hh}=G^{\prime \prime }_{uu}\) to which the hodograph images of both cases of the systems of equations of these semiclassical approximations are equivalent.

分享
查看原文
非线性薛定谔方程解的半经典近似中的典型丢弃渐近法
Abstract Formal asymptics are substantiated that describe a typical dropping cusp singularity in the semiclassical approximations to solutions of two cases of the integrable nonlinearSchrödinger equation \(-i\varepsilon \Psi ^{\prime }_{t} = \varepsilon ^2\Psi ^{\prime \prime }_{xx}\pm 2|\Psi | ^2\Psi \)、其中 \(\varepsilon \)是一个小参数。证明使用了数学灾难理论的概念和事实,以及 Yu.F.Korobeinik's storem concerning analytical, as \(h\to 0\), solutions\(G(h,u) \) of the mixed type linear equation\(hG^{\prime \prime }_{hh}=G^{\prime \prime }_{uu}\) to which the hodograph images of the both cases of the systems of equations of these semiclassicalapproximations are equivalent.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信