$\mathbb{USCD}$: Improving Code Generation of LLMs by Uncertainty-Aware Selective Contrastive Decoding

Shuai Wang, Liang Ding, Li Shen, Yong Luo, Zheng He, Wei Yu, Dacheng Tao
{"title":"$\\mathbb{USCD}$: Improving Code Generation of LLMs by Uncertainty-Aware Selective Contrastive Decoding","authors":"Shuai Wang, Liang Ding, Li Shen, Yong Luo, Zheng He, Wei Yu, Dacheng Tao","doi":"arxiv-2409.05923","DOIUrl":null,"url":null,"abstract":"Large language models (LLMs) have shown remarkable capabilities in code\ngeneration. However, the effects of hallucinations (e.g., output noise) make it\nparticularly challenging for LLMs to generate high-quality code in one pass. In\nthis work, we propose a simple and effective \\textbf{u}ncertainty-aware\n\\textbf{s}elective \\textbf{c}ontrastive \\textbf{d}ecoding ($\\mathbb{USCD}$)\nmechanism to improve the quality of one-pass code generation in LLMs and reduce\nthe impact of output noise. To be specific, we first elaborately designed a\nnegative prompt (namely lame prompt) to output noise by removing input-output\nexamples from the standard few-shot prompt. Our preliminary study shows that\nthe Jensen-Shannon divergence (JS divergence) between token distribution\nuncertainty and the output noise is relatively low (approximately $0.25$),\nindicating their high relevance. Then, we selectively eliminate output noise\ninduced by lame prompts based on the uncertainty of the prediction distribution\nfrom the standard prompt. Notably, our proposed plug-and-play mechanism is an\ninference-only method, enjoying appealing flexibility. Extensive experiments on\nwidely used benchmarks, e.g., HumanEval, MBPP, and MultiPL-E, upon several LLMs\n(i.e., Inocder-6b, CodeLlama-7b, WizardCoder-15b, StarCoder, and Llama2-7b),\ndemonstrate that our proposed USCD significantly improves one-pass code\ngeneration, with an average \\textit{pass@$1$} scores increase of 16.59\\%. We\nwill release code and data on GitHub.","PeriodicalId":501278,"journal":{"name":"arXiv - CS - Software Engineering","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Large language models (LLMs) have shown remarkable capabilities in code generation. However, the effects of hallucinations (e.g., output noise) make it particularly challenging for LLMs to generate high-quality code in one pass. In this work, we propose a simple and effective \textbf{u}ncertainty-aware \textbf{s}elective \textbf{c}ontrastive \textbf{d}ecoding ($\mathbb{USCD}$) mechanism to improve the quality of one-pass code generation in LLMs and reduce the impact of output noise. To be specific, we first elaborately designed a negative prompt (namely lame prompt) to output noise by removing input-output examples from the standard few-shot prompt. Our preliminary study shows that the Jensen-Shannon divergence (JS divergence) between token distribution uncertainty and the output noise is relatively low (approximately $0.25$), indicating their high relevance. Then, we selectively eliminate output noise induced by lame prompts based on the uncertainty of the prediction distribution from the standard prompt. Notably, our proposed plug-and-play mechanism is an inference-only method, enjoying appealing flexibility. Extensive experiments on widely used benchmarks, e.g., HumanEval, MBPP, and MultiPL-E, upon several LLMs (i.e., Inocder-6b, CodeLlama-7b, WizardCoder-15b, StarCoder, and Llama2-7b), demonstrate that our proposed USCD significantly improves one-pass code generation, with an average \textit{pass@$1$} scores increase of 16.59\%. We will release code and data on GitHub.
$mathbb{USCD}$:通过不确定性感知的选择性对比解码改进 LLM 的代码生成
大型语言模型(LLMs)在代码生成方面表现出了非凡的能力。然而,由于幻觉(如输出噪声)的影响,LLMs 要一次性生成高质量的代码尤其具有挑战性。在这项工作中,我们提出了一种简单有效的不确定性感知(textbf{u}ncertainty-aware\textbf{s}elective \textbf{c}ontrastive\textbf{d}ecoding($\mathbb{USCD}$)机制,以提高 LLM 一次生成代码的质量,并降低输出噪声的影响。具体来说,我们首先精心设计了一种消极提示(即跛脚提示),通过从标准的几发提示中移除输入-输出示例来消除输出噪声。初步研究表明,令牌分布不确定性与输出噪声之间的詹森-香农分歧(JS 分歧)相对较低(约为 0.25 美元),这表明它们具有很高的相关性。然后,我们根据标准提示的预测分布的不确定性,有选择地消除跛脚提示引起的输出噪声。值得注意的是,我们提出的即插即用机制是一种纯推理方法,具有极高的灵活性。在广泛使用的基准(如HumanEval、MBPP和MultiPL-E)和多个LLM(即Inocder-6b、CodeLlama-7b、WizardCoder-15b、StarCoder和Llama2-7b)上进行的大量实验表明,我们提出的USCD显著提高了单通代码生成能力,平均textit{pass@$1$}得分提高了16.59%。我们将在 GitHub 上发布代码和数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信