TorchDA: A Python package for performing data assimilation with deep learning forward and transformation functions

Sibo Cheng, Jinyang Min, Che Liu, Rossella Arcucci
{"title":"TorchDA: A Python package for performing data assimilation with deep learning forward and transformation functions","authors":"Sibo Cheng, Jinyang Min, Che Liu, Rossella Arcucci","doi":"arxiv-2409.00244","DOIUrl":null,"url":null,"abstract":"Data assimilation techniques are often confronted with challenges handling\ncomplex high dimensional physical systems, because high precision simulation in\ncomplex high dimensional physical systems is computationally expensive and the\nexact observation functions that can be applied in these systems are difficult\nto obtain. It prompts growing interest in integrating deep learning models\nwithin data assimilation workflows, but current software packages for data\nassimilation cannot handle deep learning models inside. This study presents a\nnovel Python package seamlessly combining data assimilation with deep neural\nnetworks to serve as models for state transition and observation functions. The\npackage, named TorchDA, implements Kalman Filter, Ensemble Kalman Filter\n(EnKF), 3D Variational (3DVar), and 4D Variational (4DVar) algorithms, allowing\nflexible algorithm selection based on application requirements. Comprehensive\nexperiments conducted on the Lorenz 63 and a two-dimensional shallow water\nsystem demonstrate significantly enhanced performance over standalone model\npredictions without assimilation. The shallow water analysis validates data\nassimilation capabilities mapping between different physical quantity spaces in\neither full space or reduced order space. Overall, this innovative software\npackage enables flexible integration of deep learning representations within\ndata assimilation, conferring a versatile tool to tackle complex high\ndimensional dynamical systems across scientific domains.","PeriodicalId":501256,"journal":{"name":"arXiv - CS - Mathematical Software","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Mathematical Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data assimilation techniques are often confronted with challenges handling complex high dimensional physical systems, because high precision simulation in complex high dimensional physical systems is computationally expensive and the exact observation functions that can be applied in these systems are difficult to obtain. It prompts growing interest in integrating deep learning models within data assimilation workflows, but current software packages for data assimilation cannot handle deep learning models inside. This study presents a novel Python package seamlessly combining data assimilation with deep neural networks to serve as models for state transition and observation functions. The package, named TorchDA, implements Kalman Filter, Ensemble Kalman Filter (EnKF), 3D Variational (3DVar), and 4D Variational (4DVar) algorithms, allowing flexible algorithm selection based on application requirements. Comprehensive experiments conducted on the Lorenz 63 and a two-dimensional shallow water system demonstrate significantly enhanced performance over standalone model predictions without assimilation. The shallow water analysis validates data assimilation capabilities mapping between different physical quantity spaces in either full space or reduced order space. Overall, this innovative software package enables flexible integration of deep learning representations within data assimilation, conferring a versatile tool to tackle complex high dimensional dynamical systems across scientific domains.
TorchDA:利用深度学习前向和转换函数执行数据同化的 Python 软件包
数据同化技术在处理复杂的高维物理系统时经常面临挑战,因为对复杂的高维物理系统进行高精度模拟的计算成本很高,而且很难获得可用于这些系统的精确观测函数。这促使人们对在数据同化工作流程中集成深度学习模型越来越感兴趣,但目前的数据同化软件包无法在内部处理深度学习模型。本研究提出了一个新颖的 Python 软件包,将数据同化与深度神经网络无缝结合,作为状态转换和观测函数的模型。该软件包名为 TorchDA,实现了卡尔曼滤波、集合卡尔曼滤波(EnKF)、三维变分(3DVar)和四维变分(4DVar)算法,允许根据应用需求灵活选择算法。在洛伦兹 63 和二维浅水系统上进行的综合实验表明,与没有同化的独立模型预测相比,该算法的性能显著提高。浅水分析验证了数据同化在不同物理量空间(全空间或降阶空间)之间的映射能力。总之,这一创新软件包实现了深度学习表征与数据同化的灵活集成,为处理跨科学领域的复杂高维动态系统提供了多功能工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信