The pressure-wired Stokes element: a mesh-robust version of the Scott–Vogelius element

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
Benedikt Gräßle, Nis-Erik Bohne, Stefan Sauter
{"title":"The pressure-wired Stokes element: a mesh-robust version of the Scott–Vogelius element","authors":"Benedikt Gräßle, Nis-Erik Bohne, Stefan Sauter","doi":"10.1007/s00211-024-01430-x","DOIUrl":null,"url":null,"abstract":"<p>The Scott–Vogelius finite element pair for the numerical discretization of the stationary Stokes equation in 2D is a popular element which is based on a continuous velocity approximation of polynomial order <i>k</i> and a discontinuous pressure approximation of order <span>\\(k-1\\)</span>. It employs a “singular distance” (measured by some geometric mesh quantity <span>\\( \\Theta \\left( \\textbf{z}\\right) \\ge 0\\)</span> for triangle vertices <span>\\(\\textbf{z}\\)</span>) and imposes a local side condition on the pressure space associated to vertices <span>\\(\\textbf{z}\\)</span> with <span>\\(\\Theta \\left( \\textbf{z}\\right) =0\\)</span>. The method is inf-sup stable for any fixed regular triangulation and <span>\\(k\\ge 4\\)</span>. However, the inf-sup constant deteriorates if the triangulation contains nearly singular vertices <span>\\(0&lt;\\Theta \\left( \\textbf{z}\\right) \\ll 1\\)</span>. In this paper, we introduce a very simple parameter-dependent modification of the Scott–Vogelius element with a mesh-robust inf-sup constant. To this end, we provide sharp two-sided bounds for the inf-sup constant with an optimal dependence on the “singular distance”. We characterise the critical pressures to guarantee that the effect on the divergence-free condition for the discrete velocity is negligibly small, for which we provide numerical evidence.</p>","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":"10 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerische Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00211-024-01430-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The Scott–Vogelius finite element pair for the numerical discretization of the stationary Stokes equation in 2D is a popular element which is based on a continuous velocity approximation of polynomial order k and a discontinuous pressure approximation of order \(k-1\). It employs a “singular distance” (measured by some geometric mesh quantity \( \Theta \left( \textbf{z}\right) \ge 0\) for triangle vertices \(\textbf{z}\)) and imposes a local side condition on the pressure space associated to vertices \(\textbf{z}\) with \(\Theta \left( \textbf{z}\right) =0\). The method is inf-sup stable for any fixed regular triangulation and \(k\ge 4\). However, the inf-sup constant deteriorates if the triangulation contains nearly singular vertices \(0<\Theta \left( \textbf{z}\right) \ll 1\). In this paper, we introduce a very simple parameter-dependent modification of the Scott–Vogelius element with a mesh-robust inf-sup constant. To this end, we provide sharp two-sided bounds for the inf-sup constant with an optimal dependence on the “singular distance”. We characterise the critical pressures to guarantee that the effect on the divergence-free condition for the discrete velocity is negligibly small, for which we provide numerical evidence.

Abstract Image

压力有线斯托克斯元素:斯科特-沃格柳斯元素的网格稳健版
用于二维静态斯托克斯方程数值离散化的斯科特-沃格柳斯有限元对是一种流行的元素,它基于多项式阶数为 k 的连续速度近似和阶数为\(k-1\)的不连续压力近似。它为三角形顶点(textbf{z}\)采用了 "奇异距离"(通过一些几何网格量(\θ \left( \textbf{z}\right) \ge 0\ )来测量),并在与顶点(textbf{z}\)相关的压力空间上施加了一个局部边条件(\θ \left( \textbf{z}\right) =0/)。对于任何固定的正则三角剖分和(textbf{z}right),该方法都是下上稳定的。然而,如果三角剖分包含近乎奇异的顶点,那么 inf-sup 常量就会变差(0<\theta \left( (textbf{z}\right) \ll 1\ )。在本文中,我们引入了一种非常简单的、与参数相关的斯科特-沃格柳斯元素修正方法,该方法具有一个可保护网格的下上常数。为此,我们提供了与 "奇异距离 "最佳相关的 inf-sup 常量的尖锐双面约束。我们描述了临界压力的特征,以保证对离散速度无发散条件的影响小到可以忽略不计,并为此提供了数值证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Numerische Mathematik
Numerische Mathematik 数学-应用数学
CiteScore
4.10
自引率
4.80%
发文量
72
审稿时长
6-12 weeks
期刊介绍: Numerische Mathematik publishes papers of the very highest quality presenting significantly new and important developments in all areas of Numerical Analysis. "Numerical Analysis" is here understood in its most general sense, as that part of Mathematics that covers: 1. The conception and mathematical analysis of efficient numerical schemes actually used on computers (the "core" of Numerical Analysis) 2. Optimization and Control Theory 3. Mathematical Modeling 4. The mathematical aspects of Scientific Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信