Jun Sun, Yifei Peng, Chen Chen, Bing Zhang, Zhaoqi Wu, Yilin Jia, Lei Shi
{"title":"ESC-YOLO: optimizing apple fruit recognition with efficient spatial and channel features in YOLOX","authors":"Jun Sun, Yifei Peng, Chen Chen, Bing Zhang, Zhaoqi Wu, Yilin Jia, Lei Shi","doi":"10.1007/s11554-024-01540-7","DOIUrl":null,"url":null,"abstract":"<p>Accurate localization of apple fruits and recognition of occlusion types in complex orchard environments play an important role in precision agriculture. This work proposes an efficient fruit recognition model called Efficient Spatial and Channel Feature YOLOX (ESC-YOLO). ESC-YOLO is built upon YOLOX and fully leverages and emphasizes spatial channel information, ensuring coherence between global information and local features. The optimization strategies for the backbone network involve adopting EfficientViT as the foundational backbone, integrating Spatial and Channel Reconstruction Convolution (SCConv) into the input stem to reorganize spatial channel features and reduce redundancy, and constructing the Efficient-MBConv module, which is optimally combined with the EfficientViTBlock for feature extraction. The optimization strategies for the neck network involve utilizing the Centralized Feature Pyramid Net (CFPNet) as the neck network and employing a Simple, Parameter-Free Attention Module (SimAM) to enhance model performance. In this work, we adopted the lightweight model of the ESC-YOLO for performance evaluation, namely ESC-YOLO-S. It achieves a 4.26% improvement in Top-1 mean Average Precision (mAP) compared to YOLOX-S and significantly reduces the false and missed detections caused by various types of occlusions. Therefore, the improved model meets the requirements for high-precision identification in complex orchard environments.</p>","PeriodicalId":51224,"journal":{"name":"Journal of Real-Time Image Processing","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Real-Time Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11554-024-01540-7","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate localization of apple fruits and recognition of occlusion types in complex orchard environments play an important role in precision agriculture. This work proposes an efficient fruit recognition model called Efficient Spatial and Channel Feature YOLOX (ESC-YOLO). ESC-YOLO is built upon YOLOX and fully leverages and emphasizes spatial channel information, ensuring coherence between global information and local features. The optimization strategies for the backbone network involve adopting EfficientViT as the foundational backbone, integrating Spatial and Channel Reconstruction Convolution (SCConv) into the input stem to reorganize spatial channel features and reduce redundancy, and constructing the Efficient-MBConv module, which is optimally combined with the EfficientViTBlock for feature extraction. The optimization strategies for the neck network involve utilizing the Centralized Feature Pyramid Net (CFPNet) as the neck network and employing a Simple, Parameter-Free Attention Module (SimAM) to enhance model performance. In this work, we adopted the lightweight model of the ESC-YOLO for performance evaluation, namely ESC-YOLO-S. It achieves a 4.26% improvement in Top-1 mean Average Precision (mAP) compared to YOLOX-S and significantly reduces the false and missed detections caused by various types of occlusions. Therefore, the improved model meets the requirements for high-precision identification in complex orchard environments.
期刊介绍:
Due to rapid advancements in integrated circuit technology, the rich theoretical results that have been developed by the image and video processing research community are now being increasingly applied in practical systems to solve real-world image and video processing problems. Such systems involve constraints placed not only on their size, cost, and power consumption, but also on the timeliness of the image data processed.
Examples of such systems are mobile phones, digital still/video/cell-phone cameras, portable media players, personal digital assistants, high-definition television, video surveillance systems, industrial visual inspection systems, medical imaging devices, vision-guided autonomous robots, spectral imaging systems, and many other real-time embedded systems. In these real-time systems, strict timing requirements demand that results are available within a certain interval of time as imposed by the application.
It is often the case that an image processing algorithm is developed and proven theoretically sound, presumably with a specific application in mind, but its practical applications and the detailed steps, methodology, and trade-off analysis required to achieve its real-time performance are not fully explored, leaving these critical and usually non-trivial issues for those wishing to employ the algorithm in a real-time system.
The Journal of Real-Time Image Processing is intended to bridge the gap between the theory and practice of image processing, serving the greater community of researchers, practicing engineers, and industrial professionals who deal with designing, implementing or utilizing image processing systems which must satisfy real-time design constraints.