Identifying Patterns Using Cross-Correlation Random Matrices Derived from Deterministic and Stochastic Differential Equations

Roberto da Silva, Sandra D. Prado
{"title":"Identifying Patterns Using Cross-Correlation Random Matrices Derived from Deterministic and Stochastic Differential Equations","authors":"Roberto da Silva, Sandra D. Prado","doi":"arxiv-2408.08237","DOIUrl":null,"url":null,"abstract":"Cross-Correlation random matrices have emerged as a promising indicator of\nphase transitions in spin systems. The core concept is that the evolution of\nmagnetization encapsulates thermodynamic information [R. da Silva, Int. J. Mod.\nPhys. C, 2350061 (2023)], which is directly reflected in the eigenvalues of\nthese matrices. When these evolutions are analyzed in the mean-field regime, an\nimportant question arises: Can the Langevin equation, when translated into\nmaps, perform the same function? Some studies suggest that this method may also\ncapture the chaotic behavior of certain systems. In this work, we propose that\nthe spectral properties of random matrices constructed from maps derived from\ndeterministic or stochastic differential equations can indicate the critical or\nchaotic behavior of such systems. For chaotic systems, we need only the\nevolution of iterated Hamiltonian equations, and for spin systems, the Langevin\nmaps obtained from mean-field equations suffice, thus avoiding the need for\nMonte Carlo (MC) simulations or other techniques.","PeriodicalId":501167,"journal":{"name":"arXiv - PHYS - Chaotic Dynamics","volume":"62 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.08237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cross-Correlation random matrices have emerged as a promising indicator of phase transitions in spin systems. The core concept is that the evolution of magnetization encapsulates thermodynamic information [R. da Silva, Int. J. Mod. Phys. C, 2350061 (2023)], which is directly reflected in the eigenvalues of these matrices. When these evolutions are analyzed in the mean-field regime, an important question arises: Can the Langevin equation, when translated into maps, perform the same function? Some studies suggest that this method may also capture the chaotic behavior of certain systems. In this work, we propose that the spectral properties of random matrices constructed from maps derived from deterministic or stochastic differential equations can indicate the critical or chaotic behavior of such systems. For chaotic systems, we need only the evolution of iterated Hamiltonian equations, and for spin systems, the Langevin maps obtained from mean-field equations suffice, thus avoiding the need for Monte Carlo (MC) simulations or other techniques.
利用从确定性和随机微分方程得出的交叉相关随机矩阵识别模式
交叉相关随机矩阵已成为自旋系统相变的一个有前途的指标。其核心概念是磁化演化包含热力学信息[R. da Silva,Int. J. Mod.Phys. C,2350061 (2023)],这些信息直接反映在这些矩阵的特征值中。在均场机制中分析这些演化时,出现了一个重要问题:朗之文方程在转化为映射时,能否执行相同的功能?一些研究表明,这种方法也可以捕捉某些系统的混沌行为。在这项工作中,我们提出,由确定性或随机微分方程导出的映射构建的随机矩阵的谱特性可以指示这类系统的临界或混沌行为。对于混沌系统,我们只需要迭代哈密顿方程的演化,而对于自旋系统,从均值场方程得到的朗格文映射就足够了,从而避免了蒙特卡罗(MC)模拟或其他技术的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信