Existence and multiplicity of solutions for the Schrödinger–Poisson equation with prescribed mass

IF 1.4 3区 数学 Q1 MATHEMATICS
Xueqin Peng
{"title":"Existence and multiplicity of solutions for the Schrödinger–Poisson equation with prescribed mass","authors":"Xueqin Peng","doi":"10.1007/s13324-024-00963-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the existence and multiplicity for the following Schrödinger–Poisson equation </p><div><div><span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} -\\Delta u+\\lambda u-\\kappa (|x|^{-1}*|u|^2)u=f(u),&amp;{}\\text {in}~~{\\mathbb {R}}^{3},\\\\ u&gt;0,~\\displaystyle \\int _{{\\mathbb {R}}^{3}}u^2dx=a^2, \\end{array}\\right. } \\end{aligned}$$</span></div></div><p>where <span>\\(a&gt;0\\)</span> is a prescribed mass, <span>\\(\\kappa \\in {\\mathbb {R}}\\setminus \\{0\\}\\)</span> and <span>\\(\\lambda \\in {\\mathbb {R}}\\)</span> is an undetermined parameter which appears as a Lagrange multiplier. Our results are threefold: (i) for the case <span>\\(\\kappa &lt;0\\)</span>, we obtain the normalized ground state solution for <span>\\(a&gt;0\\)</span> small by working on the Pohozaev manifold, where <i>f</i> satisfies the <span>\\(L^2\\)</span>-supercritical and Sobolev subcritical conditions, and the behavior of the normalized ground state energy <span>\\(c_a\\)</span> is also obtained; (ii) we prove that the above equation possesses infinitely many radial solutions whose energy converges to infinity; (iii) for <span>\\(\\kappa &gt;0\\)</span> and <span>\\(f(u)=|u|^{4}u\\)</span>, we revisit the Brézis–Nirenberg problem with a nonlocal perturbation and obtain infinitely many radial solutions with negative energy. Our results implement some existing results about the Schrödinger–Poisson equation in the <span>\\(L^2\\)</span>-constraint setting.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"14 5","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00963-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the existence and multiplicity for the following Schrödinger–Poisson equation

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u+\lambda u-\kappa (|x|^{-1}*|u|^2)u=f(u),&{}\text {in}~~{\mathbb {R}}^{3},\\ u>0,~\displaystyle \int _{{\mathbb {R}}^{3}}u^2dx=a^2, \end{array}\right. } \end{aligned}$$

where \(a>0\) is a prescribed mass, \(\kappa \in {\mathbb {R}}\setminus \{0\}\) and \(\lambda \in {\mathbb {R}}\) is an undetermined parameter which appears as a Lagrange multiplier. Our results are threefold: (i) for the case \(\kappa <0\), we obtain the normalized ground state solution for \(a>0\) small by working on the Pohozaev manifold, where f satisfies the \(L^2\)-supercritical and Sobolev subcritical conditions, and the behavior of the normalized ground state energy \(c_a\) is also obtained; (ii) we prove that the above equation possesses infinitely many radial solutions whose energy converges to infinity; (iii) for \(\kappa >0\) and \(f(u)=|u|^{4}u\), we revisit the Brézis–Nirenberg problem with a nonlocal perturbation and obtain infinitely many radial solutions with negative energy. Our results implement some existing results about the Schrödinger–Poisson equation in the \(L^2\)-constraint setting.

Abstract Image

具有规定质量的薛定谔-泊松方程的解的存在性和多重性
本文研究了以下薛定谔-泊松方程的存在性和多重性 $$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u+\lambda u-\kappa (|x|^{-1}*|u|^2)u=f(u),&;{}\text {in}~~{\mathbb {R}}^{3},\ u>0,~\displaystyle \int _{\mathbb {R}}^{3}}u^2dx=a^2,\end{array}\right.}\end{aligned}$$其中\(a>0\)是一个规定的质量,\(\kappa \ in {\mathbb {R}}setminus \{0\}\)和\(\lambda \ in {\mathbb {R}}\) 是一个未确定的参数,作为拉格朗日乘数出现。我们的结果有三个方面:(i) 对于\(kappa <0\)的情况,我们通过在Pohozaev流形上的工作得到了\(a>0\)小的归一化基态解,其中f满足\(L^2\)-超临界和Sobolev次临界条件,并且还得到了归一化基态能量\(c_a\)的行为;(iii) 对于 \(\kappa >0\) 和 \(f(u)=|u|^{4}u\),我们用非局部扰动重新审视了布雷齐斯-尼伦堡问题,并得到了无限多的负能量径向解。我们的结果实现了关于薛定谔-泊松方程在\(L^2\)约束条件下的一些已有结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信