{"title":"On odd univalent harmonic mappings","authors":"Kapil Jaglan, Anbareeswaran Sairam Kaliraj","doi":"10.1007/s13324-024-00964-5","DOIUrl":null,"url":null,"abstract":"<div><p>Odd univalent analytic functions played an instrumental role in the proof of the celebrated Bieberbach conjecture. In this article, we explore odd univalent harmonic mappings, focusing on coefficient estimates, growth and distortion theorems. Motivated by the unresolved harmonic analogue of the Bieberbach conjecture, we investigate specific subclasses of <span>\\({\\mathcal {S}}^0_H\\)</span>, the class of sense-preserving univalent harmonic functions. We provide sharp coefficient bounds for functions exhibiting convexity in one direction and extend our findings to a more generalized class including the major geometric subclasses of <span>\\({\\mathcal {S}}^0_H\\)</span>. Additionally, we analyze the inclusion of these functions in Hardy spaces and broaden the range of <i>p</i> for which they belong. In particular, the results of this article enhance understanding and highlight analogous growth patterns between odd univalent harmonic functions and the harmonic Bieberbach conjecture. We conclude the article with 2 conjectures and possible scope for further study as well.\n</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"14 5","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00964-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Odd univalent analytic functions played an instrumental role in the proof of the celebrated Bieberbach conjecture. In this article, we explore odd univalent harmonic mappings, focusing on coefficient estimates, growth and distortion theorems. Motivated by the unresolved harmonic analogue of the Bieberbach conjecture, we investigate specific subclasses of \({\mathcal {S}}^0_H\), the class of sense-preserving univalent harmonic functions. We provide sharp coefficient bounds for functions exhibiting convexity in one direction and extend our findings to a more generalized class including the major geometric subclasses of \({\mathcal {S}}^0_H\). Additionally, we analyze the inclusion of these functions in Hardy spaces and broaden the range of p for which they belong. In particular, the results of this article enhance understanding and highlight analogous growth patterns between odd univalent harmonic functions and the harmonic Bieberbach conjecture. We conclude the article with 2 conjectures and possible scope for further study as well.
期刊介绍:
Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.