{"title":"Attractors in k-Dimensional Discrete Systems of Mixed Monotonicity","authors":"Ziyad AlSharawi, Jose S. Cánovas, Sadok Kallel","doi":"10.1007/s12346-024-01123-8","DOIUrl":null,"url":null,"abstract":"<p>We consider <i>k</i>-dimensional discrete-time systems of the form <span>\\(x_{n+1}=F(x_n,\\ldots ,x_{n-k+1})\\)</span> in which the map <i>F</i> is continuous and monotonic in each one of its arguments. We define a partial order on <span>\\({\\mathbb {R}}^{2k}_+\\)</span>, compatible with the monotonicity of <i>F</i>, and then use it to embed the <i>k</i>-dimensional system into a 2<i>k</i>-dimensional system that is monotonic with respect to this poset structure. An analogous construction is given for periodic systems. Using the characteristics of the higher-dimensional monotonic system, global stability results are obtained for the original system. Our results apply to a large class of difference equations that are pertinent in a variety of contexts. As an application of the developed theory, we provide two examples that cover a wide class of difference equations, and in a subsequent paper, we provide additional applications of general interest.</p>","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"5 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-024-01123-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider k-dimensional discrete-time systems of the form \(x_{n+1}=F(x_n,\ldots ,x_{n-k+1})\) in which the map F is continuous and monotonic in each one of its arguments. We define a partial order on \({\mathbb {R}}^{2k}_+\), compatible with the monotonicity of F, and then use it to embed the k-dimensional system into a 2k-dimensional system that is monotonic with respect to this poset structure. An analogous construction is given for periodic systems. Using the characteristics of the higher-dimensional monotonic system, global stability results are obtained for the original system. Our results apply to a large class of difference equations that are pertinent in a variety of contexts. As an application of the developed theory, we provide two examples that cover a wide class of difference equations, and in a subsequent paper, we provide additional applications of general interest.
我们考虑形式为 \(x_{n+1}=F(x_n,\ldots ,x_{n-k+1})\ 的 k 维离散时间系统,其中映射 F 在其每个参数中都是连续且单调的。我们在 \({\mathbb {R}}^{2k}_+\) 上定义了一个与 F 的单调性兼容的偏序,然后用它把 k 维系统嵌入到一个 2k 维系统中,这个 2k 维系统相对于这个正集结构是单调的。对于周期系统,我们也给出了类似的构造。利用高维单调系统的特征,可以得到原始系统的全局稳定性结果。我们的结果适用于一大类与各种情况相关的差分方程。作为所开发理论的应用,我们提供了两个涵盖各类差分方程的示例,并在后续论文中提供了更多具有普遍意义的应用。
期刊介绍:
Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.