N-Soliton and Other Analytic Solutions for a ( $$3 + 1$$ )-Dimensional Korteweg–de Vries–Calogero–Bogoyavlenskii–Schiff Equation with the Time-Dependent Coefficients for the Shallow Water Waves

IF 1.9 3区 数学 Q1 MATHEMATICS
Hong-Wen Shan, Bo Tian, Chong-Dong Cheng, Xiao-Tian Gao, Yu-Qi Chen, Hao-Dong Liu
{"title":"N-Soliton and Other Analytic Solutions for a ( $$3 + 1$$ )-Dimensional Korteweg–de Vries–Calogero–Bogoyavlenskii–Schiff Equation with the Time-Dependent Coefficients for the Shallow Water Waves","authors":"Hong-Wen Shan, Bo Tian, Chong-Dong Cheng, Xiao-Tian Gao, Yu-Qi Chen, Hao-Dong Liu","doi":"10.1007/s12346-024-01125-6","DOIUrl":null,"url":null,"abstract":"<p>Shallow water waves are seen in magnetohydrodynamics, atmospheric science, oceanography and so on. In this article, we study a (<span>\\(3+1\\)</span>)-dimensional Korteweg–de Vries–Calogero–Bogoyavlenskii–Schiff equation with the time-dependent coefficients for the shallow water waves. <i>N</i>-soliton solutions are obtained via the simplified Hirota method. Via the <i>N</i>-soliton solutions, we present the elastic interactions between the two solitons and among the three solitons. Some other analytic solutions are constructed through the tanh method and <span>\\((\\frac{G'}{G^{2}})\\)</span>-expansion method.</p>","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"40 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-024-01125-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Shallow water waves are seen in magnetohydrodynamics, atmospheric science, oceanography and so on. In this article, we study a (\(3+1\))-dimensional Korteweg–de Vries–Calogero–Bogoyavlenskii–Schiff equation with the time-dependent coefficients for the shallow water waves. N-soliton solutions are obtained via the simplified Hirota method. Via the N-soliton solutions, we present the elastic interactions between the two solitons and among the three solitons. Some other analytic solutions are constructed through the tanh method and \((\frac{G'}{G^{2}})\)-expansion method.

Abstract Image

浅层水波的 ( $$3 + 1$$ )维 Korteweg-de Vries-Calogero-Bogoyavlenskii-Schiff 方程与时间相关系数的 N-索利顿和其他解析解
浅水波出现在磁流体力学、大气科学、海洋学等领域。本文研究了一个 (\(3+1\))-dimensional Korteweg-de Vries-Calogero-Bogoyavlenskii-Schiff 方程,其中浅水波的系数随时间变化。通过简化 Hirota 方法获得了 N-soliton 解。通过 N 孤子解,我们展示了两个孤子之间以及三个孤子之间的弹性相互作用。我们还通过 tanh 法和((\frac{G'}{G^{2}})展开法构建了其他一些解析解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Qualitative Theory of Dynamical Systems
Qualitative Theory of Dynamical Systems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.50
自引率
14.30%
发文量
130
期刊介绍: Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信