Xiao Zhang, Taher A. Nofal, Aleksander Vokhmintsev, Mostafa M. A. Khater
{"title":"Exploring Solitary Waves and Nonlinear Dynamics in the Fractional Chaffee–Infante Equation: A Study Beyond Conventional Diffusion Models","authors":"Xiao Zhang, Taher A. Nofal, Aleksander Vokhmintsev, Mostafa M. A. Khater","doi":"10.1007/s12346-024-01121-w","DOIUrl":null,"url":null,"abstract":"<p>The current study examines the (2 + 1)-dimensional fractional Chaffee–Infante (FCI) model, which is a nonlinear evolution equation that characterizes the processes of pattern generation, reaction-diffusion, and nonlinear wave propagation. The construction of analytical solutions involves the use of analytical methods, namely the Khater III and improved Kudryashov schemes. The He’s Variational Iteration method is employed as a numerical approach to validate the accuracy of the obtained solutions. The main objective of this study is to get novel analytical and numerical solutions for the FCI model, with the intention of gaining a deeper understanding of the system’s dynamics and its possible implications in the fields of fluid mechanics, plasma physics, and optical fiber communications. The study makes a valuable contribution to the area of nonlinear science via the use of innovative analytical and numerical methodologies in the FCI model. This research enhances our comprehension of pattern creation, reaction–diffusion phenomena, and the propagation of nonlinear waves in diverse physical scenarios.\n</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-024-01121-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The current study examines the (2 + 1)-dimensional fractional Chaffee–Infante (FCI) model, which is a nonlinear evolution equation that characterizes the processes of pattern generation, reaction-diffusion, and nonlinear wave propagation. The construction of analytical solutions involves the use of analytical methods, namely the Khater III and improved Kudryashov schemes. The He’s Variational Iteration method is employed as a numerical approach to validate the accuracy of the obtained solutions. The main objective of this study is to get novel analytical and numerical solutions for the FCI model, with the intention of gaining a deeper understanding of the system’s dynamics and its possible implications in the fields of fluid mechanics, plasma physics, and optical fiber communications. The study makes a valuable contribution to the area of nonlinear science via the use of innovative analytical and numerical methodologies in the FCI model. This research enhances our comprehension of pattern creation, reaction–diffusion phenomena, and the propagation of nonlinear waves in diverse physical scenarios.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.