Exploring Solitary Waves and Nonlinear Dynamics in the Fractional Chaffee–Infante Equation: A Study Beyond Conventional Diffusion Models

IF 1.9 3区 数学 Q1 MATHEMATICS
Xiao Zhang, Taher A. Nofal, Aleksander Vokhmintsev, Mostafa M. A. Khater
{"title":"Exploring Solitary Waves and Nonlinear Dynamics in the Fractional Chaffee–Infante Equation: A Study Beyond Conventional Diffusion Models","authors":"Xiao Zhang, Taher A. Nofal, Aleksander Vokhmintsev, Mostafa M. A. Khater","doi":"10.1007/s12346-024-01121-w","DOIUrl":null,"url":null,"abstract":"<p>The current study examines the (2 + 1)-dimensional fractional Chaffee–Infante (FCI) model, which is a nonlinear evolution equation that characterizes the processes of pattern generation, reaction-diffusion, and nonlinear wave propagation. The construction of analytical solutions involves the use of analytical methods, namely the Khater III and improved Kudryashov schemes. The He’s Variational Iteration method is employed as a numerical approach to validate the accuracy of the obtained solutions. The main objective of this study is to get novel analytical and numerical solutions for the FCI model, with the intention of gaining a deeper understanding of the system’s dynamics and its possible implications in the fields of fluid mechanics, plasma physics, and optical fiber communications. The study makes a valuable contribution to the area of nonlinear science via the use of innovative analytical and numerical methodologies in the FCI model. This research enhances our comprehension of pattern creation, reaction–diffusion phenomena, and the propagation of nonlinear waves in diverse physical scenarios.\n</p>","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"40 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-024-01121-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The current study examines the (2 + 1)-dimensional fractional Chaffee–Infante (FCI) model, which is a nonlinear evolution equation that characterizes the processes of pattern generation, reaction-diffusion, and nonlinear wave propagation. The construction of analytical solutions involves the use of analytical methods, namely the Khater III and improved Kudryashov schemes. The He’s Variational Iteration method is employed as a numerical approach to validate the accuracy of the obtained solutions. The main objective of this study is to get novel analytical and numerical solutions for the FCI model, with the intention of gaining a deeper understanding of the system’s dynamics and its possible implications in the fields of fluid mechanics, plasma physics, and optical fiber communications. The study makes a valuable contribution to the area of nonlinear science via the use of innovative analytical and numerical methodologies in the FCI model. This research enhances our comprehension of pattern creation, reaction–diffusion phenomena, and the propagation of nonlinear waves in diverse physical scenarios.

Abstract Image

探索分数 Chaffee-Infante 方程中的孤波和非线性动力学:超越传统扩散模型的研究
本研究探讨了 (2 + 1) 维分数 Chaffee-Infante (FCI) 模型,这是一个非线性演化方程,描述了模式生成、反应扩散和非线性波传播过程的特征。解析解的构建涉及分析方法的使用,即 Khater III 和改进的 Kudryashov 方案。He's Variational Iteration 方法作为一种数值方法被用来验证所获得解的准确性。本研究的主要目的是为 FCI 模型获得新的分析和数值解,以期更深入地了解该系统的动力学及其在流体力学、等离子体物理学和光纤通信领域可能产生的影响。这项研究通过在 FCI 模型中使用创新的分析和数值方法,为非线性科学领域做出了宝贵贡献。这项研究增强了我们对模式创建、反应扩散现象和非线性波在不同物理场景中传播的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Qualitative Theory of Dynamical Systems
Qualitative Theory of Dynamical Systems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.50
自引率
14.30%
发文量
130
期刊介绍: Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信