{"title":"Writing with Mass-Selected Ions Using a Dynamic Field Wien Filter","authors":"Michael F. Espenship, Julia Laskin","doi":"10.1021/jasms.4c00274","DOIUrl":null,"url":null,"abstract":"We have designed and constructed a low-cost Wien filter based on strong permanent magnets and integrated it into an ion soft-landing instrument to enable parallel deposition as well as one- and two-dimensional surface patterning of mass-selected ions using dynamic fields. We show the capabilities of this device for separating ions from a multicomponent high-flux continuous ion beam and simultaneous deposition of ions of different mass-to-charge ratios onto discrete locations on a surface. When a dynamic electric field is applied parallel to the magnetic field, ions are deposited in one-dimensional arrays, laterally separated by mass. The field’s strength, frequency, and waveform type determine both the lengths of the arrays and the density of ions across the 1-D pattern. Additionally, a second dynamic field from user-defined waveforms orthogonal to the magnetic field enables two-dimensional surface patterning of ions while maintaining mass separation. These experiments demonstrate the practical utility of a Wien filter for the controlled fabrication of interfaces with arbitrary patterns of mass-selected ions.","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jasms.4c00274","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
We have designed and constructed a low-cost Wien filter based on strong permanent magnets and integrated it into an ion soft-landing instrument to enable parallel deposition as well as one- and two-dimensional surface patterning of mass-selected ions using dynamic fields. We show the capabilities of this device for separating ions from a multicomponent high-flux continuous ion beam and simultaneous deposition of ions of different mass-to-charge ratios onto discrete locations on a surface. When a dynamic electric field is applied parallel to the magnetic field, ions are deposited in one-dimensional arrays, laterally separated by mass. The field’s strength, frequency, and waveform type determine both the lengths of the arrays and the density of ions across the 1-D pattern. Additionally, a second dynamic field from user-defined waveforms orthogonal to the magnetic field enables two-dimensional surface patterning of ions while maintaining mass separation. These experiments demonstrate the practical utility of a Wien filter for the controlled fabrication of interfaces with arbitrary patterns of mass-selected ions.
期刊介绍:
The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role.
Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives