Structures and infrared spectroscopy of Au$_{10}$ cluster at different temperatures

Francisco Eduardo Rojas-González, Jorge Padilla-Alvarez, César Castillo-Quevedo, Rajagopal Dashinamoorthy Eithiraj, Jose Luis Cabellos
{"title":"Structures and infrared spectroscopy of Au$_{10}$ cluster at different temperatures","authors":"Francisco Eduardo Rojas-González, Jorge Padilla-Alvarez, César Castillo-Quevedo, Rajagopal Dashinamoorthy Eithiraj, Jose Luis Cabellos","doi":"arxiv-2408.13451","DOIUrl":null,"url":null,"abstract":"Understanding the properties of Au$_{10}$ clusters entails identifying the\nlowest energy structure at cold and warm temperatures. While functional\nmaterials operate at finite temperatures, energy computations using density\nfunctional theory are typically performed at zero temperature, resulting in\nunexplored properties. Our study undertook an exploration of the potential and\nfree energy surface of the neutral Au$_{10}$ nanocluster at finite temperatures\nby employing a genetic algorithm combined with density functional theory and\nnanothermodynamics. We computed the thermal population and infrared Boltzmann\nspectrum at a finite temperature, aligning the results with validated\nexperimental data. The Zero-Order Regular Approximation (ZORA) gave\nconsideration to relativistic effects, and dispersion was incorporated using\nGrimme's dispersion D3BJ with Becke-Johnson damping. Moreover,\nnanothermodynamics was utilized to account for temperature contributions. The\ncomputed thermal population strongly supports the dominance of the 2D elongated\nhexagon configuration within a temperature range of 50 to 800 K. Importantly,\nat a temperature of 100 K, the calculated IR Boltzmann spectrum aligns with the\nexperimental IR spectrum. Lastly, the chemical bonding analysis on the lowest\nenergy structure indicates a closed-shell Au-Au interaction with a weak or\npartially covalent character.","PeriodicalId":501259,"journal":{"name":"arXiv - PHYS - Atomic and Molecular Clusters","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atomic and Molecular Clusters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the properties of Au$_{10}$ clusters entails identifying the lowest energy structure at cold and warm temperatures. While functional materials operate at finite temperatures, energy computations using density functional theory are typically performed at zero temperature, resulting in unexplored properties. Our study undertook an exploration of the potential and free energy surface of the neutral Au$_{10}$ nanocluster at finite temperatures by employing a genetic algorithm combined with density functional theory and nanothermodynamics. We computed the thermal population and infrared Boltzmann spectrum at a finite temperature, aligning the results with validated experimental data. The Zero-Order Regular Approximation (ZORA) gave consideration to relativistic effects, and dispersion was incorporated using Grimme's dispersion D3BJ with Becke-Johnson damping. Moreover, nanothermodynamics was utilized to account for temperature contributions. The computed thermal population strongly supports the dominance of the 2D elongated hexagon configuration within a temperature range of 50 to 800 K. Importantly, at a temperature of 100 K, the calculated IR Boltzmann spectrum aligns with the experimental IR spectrum. Lastly, the chemical bonding analysis on the lowest energy structure indicates a closed-shell Au-Au interaction with a weak or partially covalent character.
不同温度下 Au$_{10}$ 簇的结构和红外光谱分析
要了解 Au$_{10}$ 团簇的性质,就必须确定其在低温和高温下的最低能量结构。虽然功能材料是在有限温度下工作的,但使用密度功能理论进行的能量计算通常是在零温度下进行的,这就导致了未探索的性质。我们的研究采用遗传算法,结合密度泛函理论和纳米热力学,探索了中性 Au$_{10}$ 纳米团簇在有限温度下的势能和自由能面。我们计算了有限温度下的热种群和红外玻尔兹曼频谱,并将结果与经过验证的实验数据进行了比对。零阶正则近似法(ZORA)考虑了相对论效应,并使用带有贝克-约翰逊阻尼的格里姆色散 D3BJ 纳入了色散。此外,还利用纳米热力学来考虑温度贡献。重要的是,在温度为 100 K 时,计算得出的红外玻尔兹曼光谱与实验得出的红外光谱一致。最后,对最低能量结构的化学键分析表明,闭壳金-金相互作用具有弱共价或部分共价性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信