Numerical dissipation induced by the low-pass filtering in nonlinear gyrokinetic simulations

IF 2 3区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS
Zihao Wang, Shaojie Wang
{"title":"Numerical dissipation induced by the low-pass filtering in nonlinear gyrokinetic simulations","authors":"Zihao Wang, Shaojie Wang","doi":"10.1063/5.0222980","DOIUrl":null,"url":null,"abstract":"De-aliasing is an essential procedure for eliminating the aliasing error in nonlinear simulations, such as nonlinear gyrokinetic turbulence simulations. An ideal approach to de-aliasing in the periodic dimension is the Fourier truncation. Finite difference low-pass filtering applied in the non-periodic direction strongly dampens aliasing modes. At the same time, it induces numerical dissipation in the region of the physically realistic solution. It is shown analytically that the long-wave dissipation coefficient is proportional to the (Np−3) power of the wavenumber under desirable constraints satisfying the highest order of accuracy, where Np is the number of filter points. Numerical results after applying the optimized low-pass filtering to the nonlinear gyrokinetic turbulence simulation suggest that the nine-point format preserves intact mesoscopic zonal structures in tokamak plasma, and is therefore suitable for long-time nonlinear turbulence simulations.","PeriodicalId":20175,"journal":{"name":"Physics of Plasmas","volume":"284 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Plasmas","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0222980","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

De-aliasing is an essential procedure for eliminating the aliasing error in nonlinear simulations, such as nonlinear gyrokinetic turbulence simulations. An ideal approach to de-aliasing in the periodic dimension is the Fourier truncation. Finite difference low-pass filtering applied in the non-periodic direction strongly dampens aliasing modes. At the same time, it induces numerical dissipation in the region of the physically realistic solution. It is shown analytically that the long-wave dissipation coefficient is proportional to the (Np−3) power of the wavenumber under desirable constraints satisfying the highest order of accuracy, where Np is the number of filter points. Numerical results after applying the optimized low-pass filtering to the nonlinear gyrokinetic turbulence simulation suggest that the nine-point format preserves intact mesoscopic zonal structures in tokamak plasma, and is therefore suitable for long-time nonlinear turbulence simulations.
非线性陀螺动力学模拟中的低通滤波引起的数值耗散
去锯齿是消除非线性模拟(如非线性陀螺动能湍流模拟)中锯齿误差的重要程序。在周期维度上消除混叠的理想方法是傅立叶截断法。在非周期性方向上应用有限差分低通滤波,可以强力抑制混叠模式。与此同时,它还会在物理现实解区域引起数值耗散。分析表明,在满足最高精度阶次的理想约束条件下,长波耗散系数与波数的 (Np-3) 次方成正比,其中 Np 是滤波点的数量。将优化的低通滤波应用于非线性陀螺动湍流模拟后的数值结果表明,九点格式保留了托卡马克等离子体中完整的中观带状结构,因此适用于长时间非线性湍流模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics of Plasmas
Physics of Plasmas 物理-物理:流体与等离子体
CiteScore
4.10
自引率
22.70%
发文量
653
审稿时长
2.5 months
期刊介绍: Physics of Plasmas (PoP), published by AIP Publishing in cooperation with the APS Division of Plasma Physics, is committed to the publication of original research in all areas of experimental and theoretical plasma physics. PoP publishes comprehensive and in-depth review manuscripts covering important areas of study and Special Topics highlighting new and cutting-edge developments in plasma physics. Every year a special issue publishes the invited and review papers from the most recent meeting of the APS Division of Plasma Physics. PoP covers a broad range of important research in this dynamic field, including: -Basic plasma phenomena, waves, instabilities -Nonlinear phenomena, turbulence, transport -Magnetically confined plasmas, heating, confinement -Inertially confined plasmas, high-energy density plasma science, warm dense matter -Ionospheric, solar-system, and astrophysical plasmas -Lasers, particle beams, accelerators, radiation generation -Radiation emission, absorption, and transport -Low-temperature plasmas, plasma applications, plasma sources, sheaths -Dusty plasmas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信