William E. Lewis, David A. Yager-Elorriaga, Christopher A. Jennings, Jeffrey R. Fein, Gabriel A. Shipley, Andrew Porwitzky, Thomas J. Awe, Matthew R. Gomez, Eric C. Harding, Adam J. Harvey-Thompson, Patrick F. Knapp, Owen M. Mannion, Daniel E. Ruiz, Marc-Andre Schaeuble, Stephen A. Slutz, Matthew R. Weis, Jeffrey Woolstrum, David J. Ampleford, Luke Shulenburger
{"title":"Mining experimental magnetized liner inertial fusion data: Trends in stagnation morphology","authors":"William E. Lewis, David A. Yager-Elorriaga, Christopher A. Jennings, Jeffrey R. Fein, Gabriel A. Shipley, Andrew Porwitzky, Thomas J. Awe, Matthew R. Gomez, Eric C. Harding, Adam J. Harvey-Thompson, Patrick F. Knapp, Owen M. Mannion, Daniel E. Ruiz, Marc-Andre Schaeuble, Stephen A. Slutz, Matthew R. Weis, Jeffrey Woolstrum, David J. Ampleford, Luke Shulenburger","doi":"10.1063/5.0206222","DOIUrl":null,"url":null,"abstract":"In magnetized liner inertial fusion (MagLIF), a cylindrical liner filled with fusion fuel is imploded with the goal of producing a one-dimensional plasma column at thermonuclear conditions. However, structures attributed to three-dimensional effects are observed in self-emission x-ray images. Despite this, the impact of many experimental inputs on the column morphology has not been characterized. We demonstrate the use of a linear regression analysis to explore correlations between morphology and a wide variety of experimental inputs across 57 MagLIF experiments. Results indicate the possibility of several unexplored effects. For example, we demonstrate that increasing the initial magnetic field correlates with improved stability. Although intuitively expected, this has never been quantitatively assessed in integrated MagLIF experiments. We also demonstrate that azimuthal drive asymmetries resulting from the geometry of the “current return can” appear to measurably impact the morphology. In conjunction with several counterintuitive null results, we expect the observed correlations will encourage further experimental, theoretical, and simulation-based studies. Finally, we note that the method used in this work is general and may be applied to explore not only correlations between input conditions and morphology but also with other experimentally measured quantities.","PeriodicalId":20175,"journal":{"name":"Physics of Plasmas","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Plasmas","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0206222","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
In magnetized liner inertial fusion (MagLIF), a cylindrical liner filled with fusion fuel is imploded with the goal of producing a one-dimensional plasma column at thermonuclear conditions. However, structures attributed to three-dimensional effects are observed in self-emission x-ray images. Despite this, the impact of many experimental inputs on the column morphology has not been characterized. We demonstrate the use of a linear regression analysis to explore correlations between morphology and a wide variety of experimental inputs across 57 MagLIF experiments. Results indicate the possibility of several unexplored effects. For example, we demonstrate that increasing the initial magnetic field correlates with improved stability. Although intuitively expected, this has never been quantitatively assessed in integrated MagLIF experiments. We also demonstrate that azimuthal drive asymmetries resulting from the geometry of the “current return can” appear to measurably impact the morphology. In conjunction with several counterintuitive null results, we expect the observed correlations will encourage further experimental, theoretical, and simulation-based studies. Finally, we note that the method used in this work is general and may be applied to explore not only correlations between input conditions and morphology but also with other experimentally measured quantities.
期刊介绍:
Physics of Plasmas (PoP), published by AIP Publishing in cooperation with the APS Division of Plasma Physics, is committed to the publication of original research in all areas of experimental and theoretical plasma physics. PoP publishes comprehensive and in-depth review manuscripts covering important areas of study and Special Topics highlighting new and cutting-edge developments in plasma physics. Every year a special issue publishes the invited and review papers from the most recent meeting of the APS Division of Plasma Physics. PoP covers a broad range of important research in this dynamic field, including:
-Basic plasma phenomena, waves, instabilities
-Nonlinear phenomena, turbulence, transport
-Magnetically confined plasmas, heating, confinement
-Inertially confined plasmas, high-energy density plasma science, warm dense matter
-Ionospheric, solar-system, and astrophysical plasmas
-Lasers, particle beams, accelerators, radiation generation
-Radiation emission, absorption, and transport
-Low-temperature plasmas, plasma applications, plasma sources, sheaths
-Dusty plasmas