Muhammad Khawar Nadeem, Shaomeng Wang, Atif Jameel, Bilawal Ali, Jibran Latif, Yubin Gong
{"title":"Multipactor analysis of 431 MHz L-shaped inductive output tube cavity","authors":"Muhammad Khawar Nadeem, Shaomeng Wang, Atif Jameel, Bilawal Ali, Jibran Latif, Yubin Gong","doi":"10.1063/5.0217471","DOIUrl":null,"url":null,"abstract":"Gridless inductive output tubes (IOTs) offer compact size and high-power amplification at sub-GHz frequencies. Minimizing cavity dimensions in the interest of compactness leads to smaller gaps, which may cause multipactor discharge under high-power operating conditions. The uncontrolled electron growth resulting from multipactor breakdown can lead to undesired effects including surface damage and system failure. This paper performs a parallel-plate multipactor analysis for a high-Q, L-shaped, aluminum, 431 MHz cavity designed for a gridless IOT to be operated in the MW-power regime. The cavity gap is 27 mm, and diameter is 339 mm. Multipactor susceptibility regions are calculated for non-zero emission energy, half-cycle, and non-half-cycle multipactor using a semi-analytic approach and a standard aluminum secondary electron yield (SEY) curve. The analytical results are validated with particle-in-cell simulation in CST Studio. Simulation results show a voltage range of 6.4–19 kV, compared to the analytically calculated values of 8.2 and 18.3 kV for the lower and upper bounds, respectively. Fluorocarbon coating as a means to reduce secondary electron emission is simulated, which shows 46% reduction in peak particle population with an 11.2 nm PTFE coating, with further reduction as coating thickness increases. The results show that the L-shaped cavity is a suitable choice for this IOT design as it does not exhibit single-surface multipactor and will not develop two-surface multipactor at full-power operation.","PeriodicalId":20175,"journal":{"name":"Physics of Plasmas","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Plasmas","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0217471","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
Gridless inductive output tubes (IOTs) offer compact size and high-power amplification at sub-GHz frequencies. Minimizing cavity dimensions in the interest of compactness leads to smaller gaps, which may cause multipactor discharge under high-power operating conditions. The uncontrolled electron growth resulting from multipactor breakdown can lead to undesired effects including surface damage and system failure. This paper performs a parallel-plate multipactor analysis for a high-Q, L-shaped, aluminum, 431 MHz cavity designed for a gridless IOT to be operated in the MW-power regime. The cavity gap is 27 mm, and diameter is 339 mm. Multipactor susceptibility regions are calculated for non-zero emission energy, half-cycle, and non-half-cycle multipactor using a semi-analytic approach and a standard aluminum secondary electron yield (SEY) curve. The analytical results are validated with particle-in-cell simulation in CST Studio. Simulation results show a voltage range of 6.4–19 kV, compared to the analytically calculated values of 8.2 and 18.3 kV for the lower and upper bounds, respectively. Fluorocarbon coating as a means to reduce secondary electron emission is simulated, which shows 46% reduction in peak particle population with an 11.2 nm PTFE coating, with further reduction as coating thickness increases. The results show that the L-shaped cavity is a suitable choice for this IOT design as it does not exhibit single-surface multipactor and will not develop two-surface multipactor at full-power operation.
期刊介绍:
Physics of Plasmas (PoP), published by AIP Publishing in cooperation with the APS Division of Plasma Physics, is committed to the publication of original research in all areas of experimental and theoretical plasma physics. PoP publishes comprehensive and in-depth review manuscripts covering important areas of study and Special Topics highlighting new and cutting-edge developments in plasma physics. Every year a special issue publishes the invited and review papers from the most recent meeting of the APS Division of Plasma Physics. PoP covers a broad range of important research in this dynamic field, including:
-Basic plasma phenomena, waves, instabilities
-Nonlinear phenomena, turbulence, transport
-Magnetically confined plasmas, heating, confinement
-Inertially confined plasmas, high-energy density plasma science, warm dense matter
-Ionospheric, solar-system, and astrophysical plasmas
-Lasers, particle beams, accelerators, radiation generation
-Radiation emission, absorption, and transport
-Low-temperature plasmas, plasma applications, plasma sources, sheaths
-Dusty plasmas