Rayleigh–Taylor turbulence in strongly coupled dusty plasmas

IF 2 3区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS
Rauoof Wani, Mahendra Verma, Sanat Tiwari
{"title":"Rayleigh–Taylor turbulence in strongly coupled dusty plasmas","authors":"Rauoof Wani, Mahendra Verma, Sanat Tiwari","doi":"10.1063/5.0216032","DOIUrl":null,"url":null,"abstract":"The turbulence mixing initiated by the Rayleigh–Taylor instability has been reported in a two-dimensional (2D) strongly coupled dusty plasma system using classical molecular dynamics simulation. The entire evolution cycle, including the initial equilibrium, the instability, turbulent mixing, and, finally, a new equilibrium through the thermalization process, has been demonstrated via the respective energy spectra. The fully developed spectrum follows the Bolgiano-Obukho k−11/5 scaling at smaller wavenumbers, a characteristic 2D buoyancy-driven turbulent flow feature. At higher wavenumbers, the energy spectrum E(k)∝k represents the thermalization of the system and is a characteristic feature of 2D Euler turbulence. At longer timescales, the system reflects the Kolmogorov scale of k−3. Moreover, strong coupling slows the turbulent mixing process, though the final state is a complete thermalized system. Our results also help us to understand the thermalization process in Yukawa fluids, other strongly coupled plasma families, and turbulent mixing in low Reynolds number fluids.","PeriodicalId":20175,"journal":{"name":"Physics of Plasmas","volume":"6 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Plasmas","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0216032","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

The turbulence mixing initiated by the Rayleigh–Taylor instability has been reported in a two-dimensional (2D) strongly coupled dusty plasma system using classical molecular dynamics simulation. The entire evolution cycle, including the initial equilibrium, the instability, turbulent mixing, and, finally, a new equilibrium through the thermalization process, has been demonstrated via the respective energy spectra. The fully developed spectrum follows the Bolgiano-Obukho k−11/5 scaling at smaller wavenumbers, a characteristic 2D buoyancy-driven turbulent flow feature. At higher wavenumbers, the energy spectrum E(k)∝k represents the thermalization of the system and is a characteristic feature of 2D Euler turbulence. At longer timescales, the system reflects the Kolmogorov scale of k−3. Moreover, strong coupling slows the turbulent mixing process, though the final state is a complete thermalized system. Our results also help us to understand the thermalization process in Yukawa fluids, other strongly coupled plasma families, and turbulent mixing in low Reynolds number fluids.
强耦合尘埃等离子体中的雷利-泰勒湍流
利用经典分子动力学模拟,报告了在二维(2D)强耦合尘埃等离子体系统中由雷利-泰勒不稳定性引发的湍流混合。整个演化周期,包括初始平衡、不稳定性、湍流混合以及最后通过热化过程达到新的平衡,都通过各自的能谱得到了证明。在较小的波数下,完全展开的能谱遵循 Bolgiano-Obukho k-11/5 缩放,这是二维浮力驱动湍流的特征。在较高的波数下,能谱 E(k)∝k 代表系统的热化,是二维欧拉湍流的特征。在更长的时间尺度上,系统反映了 k-3 的科尔莫哥罗夫尺度。此外,强耦合减缓了湍流混合过程,尽管最终状态是一个完全热化的系统。我们的研究结果还有助于我们理解汤川流体、其他强耦合等离子体族的热化过程,以及低雷诺数流体中的湍流混合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics of Plasmas
Physics of Plasmas 物理-物理:流体与等离子体
CiteScore
4.10
自引率
22.70%
发文量
653
审稿时长
2.5 months
期刊介绍: Physics of Plasmas (PoP), published by AIP Publishing in cooperation with the APS Division of Plasma Physics, is committed to the publication of original research in all areas of experimental and theoretical plasma physics. PoP publishes comprehensive and in-depth review manuscripts covering important areas of study and Special Topics highlighting new and cutting-edge developments in plasma physics. Every year a special issue publishes the invited and review papers from the most recent meeting of the APS Division of Plasma Physics. PoP covers a broad range of important research in this dynamic field, including: -Basic plasma phenomena, waves, instabilities -Nonlinear phenomena, turbulence, transport -Magnetically confined plasmas, heating, confinement -Inertially confined plasmas, high-energy density plasma science, warm dense matter -Ionospheric, solar-system, and astrophysical plasmas -Lasers, particle beams, accelerators, radiation generation -Radiation emission, absorption, and transport -Low-temperature plasmas, plasma applications, plasma sources, sheaths -Dusty plasmas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信