Spatially resolved measurements of electron density of a magnetically confined split-ring resonator source

IF 2 3区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS
Andrew T. Walsten, Brian Z. Bentz, Kevin Youngman, Kunning G. Xu
{"title":"Spatially resolved measurements of electron density of a magnetically confined split-ring resonator source","authors":"Andrew T. Walsten, Brian Z. Bentz, Kevin Youngman, Kunning G. Xu","doi":"10.1063/5.0215171","DOIUrl":null,"url":null,"abstract":"Laser-collisional induced fluorescence is used to study the plasma generated by a split-ring resonator discharge under an external cusp shaped magnetic field created by permanent magnets. The electron density and electron temperature are measured for a helium plasma at different pressures, powers, and magnet field strengths. It is found that the magnetic fields produce higher electron temperatures with peak temperatures of ∼3 eV, while the no magnet case has peak temperatures of ∼0.8 eV. Conversely, the peak electron density is obtained in the no magnet case at a value of ∼1.9 × 1011 cm−3. This indicates that the cusp-field did magnetize the electrons, but contrary to expectations, it resulted in a decrease in electron density. This is believed to be due to the magnetic field having negative effects on the resonance of the plasma source.","PeriodicalId":20175,"journal":{"name":"Physics of Plasmas","volume":"20 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Plasmas","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0215171","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

Laser-collisional induced fluorescence is used to study the plasma generated by a split-ring resonator discharge under an external cusp shaped magnetic field created by permanent magnets. The electron density and electron temperature are measured for a helium plasma at different pressures, powers, and magnet field strengths. It is found that the magnetic fields produce higher electron temperatures with peak temperatures of ∼3 eV, while the no magnet case has peak temperatures of ∼0.8 eV. Conversely, the peak electron density is obtained in the no magnet case at a value of ∼1.9 × 1011 cm−3. This indicates that the cusp-field did magnetize the electrons, but contrary to expectations, it resulted in a decrease in electron density. This is believed to be due to the magnetic field having negative effects on the resonance of the plasma source.
磁约束分环谐振源电子密度的空间分辨测量结果
利用激光碰撞诱导荧光研究了在由永久磁铁产生的尖角形外部磁场下由分裂环谐振器放电产生的等离子体。测量了不同压力、功率和磁场强度下氦等离子体的电子密度和电子温度。结果发现,磁场产生的电子温度较高,峰值温度为 ∼ 3 eV,而无磁体情况下的峰值温度为 ∼ 0.8 eV。相反,无磁体情况下的电子密度峰值为 ∼1.9 × 1011 cm-3。这表明尖顶磁场确实使电子磁化,但与预期相反,它导致了电子密度的降低。相信这是由于磁场对等离子体源的共振产生了负面影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics of Plasmas
Physics of Plasmas 物理-物理:流体与等离子体
CiteScore
4.10
自引率
22.70%
发文量
653
审稿时长
2.5 months
期刊介绍: Physics of Plasmas (PoP), published by AIP Publishing in cooperation with the APS Division of Plasma Physics, is committed to the publication of original research in all areas of experimental and theoretical plasma physics. PoP publishes comprehensive and in-depth review manuscripts covering important areas of study and Special Topics highlighting new and cutting-edge developments in plasma physics. Every year a special issue publishes the invited and review papers from the most recent meeting of the APS Division of Plasma Physics. PoP covers a broad range of important research in this dynamic field, including: -Basic plasma phenomena, waves, instabilities -Nonlinear phenomena, turbulence, transport -Magnetically confined plasmas, heating, confinement -Inertially confined plasmas, high-energy density plasma science, warm dense matter -Ionospheric, solar-system, and astrophysical plasmas -Lasers, particle beams, accelerators, radiation generation -Radiation emission, absorption, and transport -Low-temperature plasmas, plasma applications, plasma sources, sheaths -Dusty plasmas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信